Rigor and the Context-Dependence of Diagrams: The Case of Euler Diagrams

  • David WaszekEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10871)


Euler famously used diagrams to illustrate syllogisms in his Lettres à une princesse d’Allemagne [1]. His diagrams are usually seen as suffering from a fatal “ambiguity problem” [11]: as soon as they involve intersecting circles, which are required for the representation of existential statements, it becomes unclear what exactly may be read off from them, and as Hammer & Shin conclusively showed, any set of reading conventions can lead to erroneous conclusions. I claim that Euler diagrams can, however, be used rigorously, if they are read in conjunction with the premises they are supposed to illustrate. More precisely, I give rigorous “heterogeneous” inference rules (in the sense of Barwise and Etchemendy) – rules whose premises are a sentence and a diagram and whose conclusion is a sentence – which allow to use them safely. I conclude that one should abandon the preconception that diagrams can only be used rigorously if they can be given a context-independent semantics. Finally, I suggest that context-dependence is a widespread feature of diagrams: for instance, Mumma [12] noticed that what may be read off from a Euclidean diagram depends not only on the diagram’s appearance, but also on the way it was constructed.


Euler Rigor Context-dependence Semantics Heterogeneous inference 



I would like to thank Jeremy Avigad, Ken Manders, Nicolas Michel, Marco Panza and David Rabouin for discussions on this topic.


  1. 1.
    Euler, L.: Lettres à une princesse d’Allemagne sur divers sujets de physique & de philosophie. Imprimerie de l’Académie Impériale des Sciences, Saint Pétersbourg (1768)Google Scholar
  2. 2.
    Sturm, J.C.: Universalia Euclidea. Adrian Vlacq, Hagæ-Comitis [The Hague] (1661)Google Scholar
  3. 3.
    Lange, J.C.: Nucleus Logicae Weisianae. Henning Müller, Gissae-Hassorum [Giessen] (1712)Google Scholar
  4. 4.
    Leibniz, G.W.: Opuscules et fragments inédits de Leibniz. Ed. by L. Couturat. F. Alcan, Paris (1903)Google Scholar
  5. 5.
    Speiser, A.: Einleitung zu den Lettres à une princesse d’Allemagne. In: Euler, L.: Opera Omnia, vol. III/1, pp. VII–XLIII. Orell Füssli, Turici [Zürich] (1960)Google Scholar
  6. 6.
    Shin, S.J.: The Logical Status of Diagrams. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Hammer, E.M.: Reasoning with sentences and diagrams. Notre Dame J. Form. Log. 35(1), 73–87 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barwise, J., Hammer, E.M.: Diagrams and the Concept of Logical System. In: [10], pp. 49–78. Orig. publ. in Gabbay, D.M. (ed.) What Is a Logical System?, pp. 73–106. Clarendon Press, Oxford (1994)Google Scholar
  9. 9.
    Barwise, J., Etchemendy, J.: Heterogeneous Logic. In: [10], pp. 179–200. Orig. publ. in Glasgow, T.I., Narayanan, N.H., Chandrasekaran, B. (eds.) Diagrammatic Reasoning: Cognitive and Computational Perspectives, pp. 209–232. AAAI Press, Menlo Park and MIT Press, Cambridge (1995)Google Scholar
  10. 10.
    Allwein, G., Barwise, J. (eds.): Logical Reasoning with Diagrams. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  11. 11.
    Hammer, E.M., Shin, S.J.: Euler’s visual logic. Hist. Philos. Log. 19(1), 1–29 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mumma, J.: Proofs, pictures, and Euclid. Synthese 175(2), 255–287 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Calinger, R.S.: Leonhard Euler: Mathematical Genius in the Enlightenment. Princeton University Press, Princeton (2015)CrossRefGoogle Scholar
  14. 14.
    Bennett, D.: Origins of the Venn diagram. In: Zack, M., Landry, E. (eds.) Research in History and Philosophy of Mathematics. PCSHPMSCPM, pp. 105–119. Springer, Cham (2015). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut d’Histoire et de Philosophie des Sciences et des Techniques (IHPST), Université Paris 1 Panthéon-SorbonneParisFrance

Personalised recommendations