Advertisement

Diagrammatic Definitions of Causal Claims

  • Dean McHughEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10871)

Abstract

We present a class of diagrams in which to reason about causation. These diagrams are based on a formal semantics called ‘system semantics’, in which states of systems are related according to temporal succession. Arguing from straightforward examples, we provide the truth conditions for causal claims that one may make about these diagrams.

References

  1. Baeten, J.C.M., Luttik, B., van Tilburg, P.: Computations and interaction. In: Natarajan, R., Ojo, A. (eds.) ICDCIT 2011. LNCS, vol. 6536, pp. 35–54. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19056-8_3CrossRefGoogle Scholar
  2. Cartwright, N.: Causal diversity and the Markov condition. Synthese 121(1), 3–27 (1999)MathSciNetCrossRefGoogle Scholar
  3. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12, 317–337 (2000)MathSciNetCrossRefGoogle Scholar
  4. Kratzer, A.: Conditionals. In: von Stechow, A., Wunderlich, D. (eds.) Semantics: An International Handbook of Contemporary Research, pp. 639–650. de Gruyter, Berlin (1991)Google Scholar
  5. Lewis, D.: Causation. J. Philos. 70(17), 556–567 (1974)CrossRefGoogle Scholar
  6. Menzies, P.: Counterfactual theories of causation. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2017 edn. (2017)Google Scholar
  7. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  8. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Logic, Language and Computation (ILLC)University of AmsterdamAmsterdamNetherlands

Personalised recommendations