The Classificatory Function of Diagrams: Two Examples from Mathematics

  • Christophe Eckes
  • Valeria GiardinoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10871)


In a recent paper, De Toffoli and Giardino analyzed the practice of knot theory, by focusing in particular on the use of diagrams to represent and study knots [1]. To this aim, they distinguished between illustrations and diagrams. An illustration is static; by contrast, a diagram is dynamic, that is, it is closely related to some specific inferential procedures. In the case of knot diagrams, a diagram is also a well-defined mathematical object in itself, which can be used to classify knots. The objective of the present paper is to reply to the following questions: Can the classificatory function characterizing knot diagrams be generalized to other fields of mathematics? Our hypothesis is that dynamic diagrams that are mathematical objects in themselves are used to solve classification problems. To argue in favor of our hypothesis, we will present and compare two examples of classifications involving them: (i) the classification of compact connected surfaces (orientable or not, with or without boundary) in combinatorial topology; (ii) the classification of complex semisimple Lie algebras.


Diagrammatic reasoning Knot diagrams Mathematical classifications Combinatorial topology Compact connected surfaces Lie algebras 



This collaboration is one of the results of the project “Les mathématiques en action” (2016–2017), funded by the Archives Henri-Poincaré and the Pôle Scientifique CLCS of the Université de Lorraine. We also acknowledge support from the ANR-DFG project FFIUM for which we thank Gerhard Heinzmann.


  1. 1.
    De Toffoli, S., Giardino, V.: Forms and roles of diagrams in Knot theory. Erkenntis 79(3), 829–842 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Klein, F.: Bemerkungen über den Zusammenhang der Flächen. Math. Ann. 7, 549–557 (1874)CrossRefGoogle Scholar
  3. 3.
    Klein, F.: Über Riemanns Theorie der algebraischen Functionen und ihrer Integrale. Teubner, Leipzig (1882)Google Scholar
  4. 4.
    von Dyck, W.: Beiträge zur analysis situs. Math. Ann. 32, 457–463 (1888)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Seifert, H., Threlfall, W.: Lehrbuch der Topologie. Teubner, Leipzig (1934)zbMATHGoogle Scholar
  6. 6.
    Poincaré, H.: Analysis situs. J. l’École Polytech. 1(2), 1–123 (1895)zbMATHGoogle Scholar
  7. 7.
    Poincaré, H.: Papers on Topology: Analysis Situs and Its Five Supplements. Translated by John Stillwell. American Mathematical Society, London Mathematical Society (2010)Google Scholar
  8. 8.
    Alexander, J.W.: Normal forms for one- and two-sided surfaces. Ann. Math. 16(1/4), 158–161 (1914–1915)Google Scholar
  9. 9.
    Gallier, J., Xu, D.: A Guide to the Classification Theorem for Compact Surfaces. Springer, Berlin (2013). Scholar
  10. 10.
    Hilbert, D., Cohn-Vossen, S.: Geometry and the imagination; transl. by P. Nemenyi. Chelsea publishing company, New York (1990)Google Scholar
  11. 11.
    Eckes, C.: (with the collaboration of Amaury Thuillier): Les groupes de Lie dans l’œuvre de Hermann Weyl. Presses universitaires de Nancy, Éditions universitaires de Lorraine (2014)Google Scholar
  12. 12.
    Cartan, E.: Sur la structure des groupes finis et continus. Doctoral thesis, Paris (1894)Google Scholar
  13. 13.
    van der Waerden, B.L.: Die Klassifikation der einfachen Lieschen Gruppen. Math. Z. 37(1), 446–462 (1933)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Artin, E.: Die Aufzählung aller einfachen kontinuierlichen Gruppen. Lecture at Göttingen University, 13–15 July. The written version of this lecture is due to H. Heesch and E. Witt (1933)Google Scholar
  15. 15.
    Coxeter, H.S.M.: Regular and semi-regular polytopes. I. Math. Z. 46, 380–407 (1940)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Witt, E.: Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe. Abh. Math. Sem. Univ. Hamburg 14, 289–322 (1941)CrossRefGoogle Scholar
  17. 17.
    Dynkin, E.: Classification of the simple Lie groups. Mat. Sb. 18(60), 347–352 (1946)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Dynkin, E.: The structure of semi-simple Lie algebras. Uspekhi Mat. Nauk 2(4(20)), 59–127 (1947)Google Scholar
  19. 19.
    Hazewinkel, M., Hesselink, W., Siersma, D., Veldkamp, F.D.: The ubiquity of Coxeter-Dynkin diagrams. Nieuw Archief voor Wiskd. 25(3), 257–307 (1977)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Archives Henri-Poincaré - Philosophie et Recherches sur les Sciences et les Technologies/Université de LorraineNancyFrance
  2. 2.Archives Henri-Poincaré - Philosophie et Recherches sur les Sciences et les Technologies/CNRSNancyFrance

Personalised recommendations