Skip to main content

Genetic Programming for Job Shop Scheduling

  • Chapter
  • First Online:
Evolutionary and Swarm Intelligence Algorithms

Part of the book series: Studies in Computational Intelligence ((SCI,volume 779))

Abstract

Designing effective scheduling rules or heuristics for a manufacturing system such as job shops is not a trivial task. In the early stage, scheduling experts rely on their experiences to develop dispatching rules and further improve them through trials-and-errors, sometimes with the help of computer simulations. In recent years, automated design approaches have been applied to develop effective dispatching rules for job shop scheduling (JSS). Genetic programming (GP) is currently the most popular approach for this task. The goal of this chapter is to summarise existing studies in this field to provide an overall picture to interested researchers. Then, we demonstrate some recent ideas to enhance the effectiveness of GP for JSS and discuss interesting research topics for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asano, M., Ohta, H.: A heuristic for job shop scheduling to minimize total weighted tardiness. Comput. Ind. Eng. 42, 137–147 (2002)

    Article  Google Scholar 

  2. Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job shop scheduling. Manage. Sci. 44, 262–275 (1998)

    Article  Google Scholar 

  3. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming: An Introduction. Morgan Kaufmann, San Francisco (1998)

    Book  Google Scholar 

  4. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Dario, P., Sandini, G., Aebischer, P. (eds.) Robots and Biological Systems: Towards a New Bionics? NATO ASI Series, vol. 102, pp. 703–712. Springer, Berlin, Heidelberg (1993). https://doi.org/10.1007/978-3-642-58069-7_38

    Chapter  Google Scholar 

  5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Inc., New York, NY, USA (1999). http://portal.acm.org/citation.cfm?id=328320

  6. Branke, J., Hildebrandt, T., Scholz-Reiter, B.: Hyper-heuristic evolution of dispatching rules: a comparison of rule representations. Evol. Comput. (2014) (in press). (https://doi.org/10.1162/EVCO_a_00131)

  7. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Exploring hyper-heuristic methodologies with genetic programming. In: Mumford, C., Jain, L. (eds.) Computational Intelligence, Intelligent Systems Reference Library, vol. 1, pp. 177–201. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  8. Cheng, V.H.L., Crawford, L.S., Menon, P.K.: Air traffic control using genetic search techniques. In: McClamroch, N.H., Sano, A., Gruebel, G. (eds.) In: Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 1, pp. 249–254. IEEE Press, Piscataway, NJ (1999)

    Google Scholar 

  9. Chiang, T.C., Shen, Y.S., Fu, L.C.: A new paradigm for rule-based scheduling in the wafer probe centre. Int. J. Prod. Res. 46(15), 4111–4133 (2008)

    Article  Google Scholar 

  10. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming for a classic one-machine scheduling problem. Adv. Eng. Softw. 32(6), 489–498 (2001)

    Article  Google Scholar 

  11. El-Bouri, A., Balakrishnan, S., Popplewell, N.: Sequencing jobs on a single machine: a neural network approach. Eur. J. Oper. Res. 126(3), 474–490 (2000)

    Article  MathSciNet  Google Scholar 

  12. Essafi, I., Mati, Y., Dauzère-Pérès, S.: A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem. Comput. Oper. Res. 35(8), 2599–2616 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, 2nd edn. Springer, Germany (2006)

    MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

    Article  MathSciNet  Google Scholar 

  15. Geiger, C.D., Uzsoy, R., Aytuğ, H.: Rapid modeling and discovery of priority dispatching rules: an autonomous learning approach. J. Sched. 9(1), 7–34 (2006)

    Article  Google Scholar 

  16. Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling problems. Oper. Res. 8(4), 487–503 (1960)

    Article  MathSciNet  Google Scholar 

  17. Goncalves, J.F., de Magalhaes Mendes, J.J., Resende, M.G.C.: A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 167(1), 77–95 (2005)

    Article  MathSciNet  Google Scholar 

  18. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules for complex shop floor scenarios—a genetic programming approach. In: Pelikan, M., Branke, J. (eds.) In: GECCO’10: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 257–264. ACM Press, New York (2010)

    Google Scholar 

  19. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Technical Report, Warwick Business School (2014)

    Google Scholar 

  20. Holthaus, O., Rajendran, C.: Efficient jobshop dispatching rules: further developments. Prod. Plann. Control 11(2), 171–178 (2000)

    Article  Google Scholar 

  21. Hunt, R., Johnston, M., Zhang, M.: Evolving “less-myopic” scheduling rules for dynamic job shop scheduling with genetic programming. In: GECCO’14: Proceedings of Genetic and Evolutionary Computation Conference (2014) (to appear)

    Google Scholar 

  22. Ingimundardottir, H., Runarsson, T.P.: Supervised learning linear priority dispatch rules for job-shop scheduling. In: Coello Coello, C.A. (ed.) Learning and Intelligent Optimization, LNCS, vol. 6683, pp. 263–277. Springer, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Jakobović, D., Budin, L.: Dynamic scheduling with genetic programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) Genetic Programming, LNCS, vol. 3905, pp. 73–84. Springer, Berlin, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Jakobović, D., Marasović, K.: Evolving priority scheduling heuristics with genetic programming. Appl. Soft Comput. 12(9), 2781–2789 (2012)

    Article  Google Scholar 

  25. Jayamohan, M.S., Rajendran, C.: New dispatching rules for shop scheduling: a step forward. Int. J. Prod. Res. 38, 563–586 (2000)

    Article  Google Scholar 

  26. Jayamohan, M.S., Rajendran, C.: Development and analysis of cost-based dispatching rules for job shop scheduling. Eur. J. Oper. Res. 157(2), 307–321 (2004)

    Article  Google Scholar 

  27. Jedrzejowicz, P., Ratajczak-Ropel, E.: Agent-based gene expression programming for solving the RCPSP/max problem. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) Adaptive and Natural Computing Algorithms. Lecture Notes in Computer Science, vol. 5495, pp. 203–212. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Johnston, M., Liddle, T., Zhang, M.: A relaxed approach to simplification in genetic programming. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Şima Uyar, A. (eds.) Genetic Programming, LNCS, vol. 6021, pp. 110–121. Springer, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA (1992)

    MATH  Google Scholar 

  30. Kreipl, S.: A large step random walk for minimizing total weighted tardiness in a job shop. J. Sched. 3, 125–138 (2000)

    Article  MathSciNet  Google Scholar 

  31. Kuczapski, A.M., Micea, M.V., Maniu, L.A., Cretu, V.I.: Efficient generation of near optimal initial populations to enhance genetic algorithms for job-shop scheduling. Inf. Technol. Control 39(1), 32–37 (2010)

    Google Scholar 

  32. van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job shop scheduling by simulated annealing. Oper. Res. 40(1), 113–125 (1992)

    Article  MathSciNet  Google Scholar 

  33. Lourenco, H.R.: Job-shop scheduling: computational study of local search and large-step optimization methods. Eur. J. Oper. Res. 83(2), 347–364 (1995)

    Article  Google Scholar 

  34. McKay, K.N., Safayeni, F.R., Buzacott, J.A.: Job-shop scheduling theory: what is relevant? Interfaces 18, 84–90 (1988)

    Article  Google Scholar 

  35. Miyashita, K.: Job-shop scheduling with genetic programming. In: Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) In: GECCO 2000: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 505–512. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  36. Nguyen, S., Zhang, M., Johnston, M., Tan, K.: Learning iterative dispatching rules for job shop scheduling with genetic programming. Int. J. Adv. Manuf. Technol. 67(1–4), 85–100 (2013)

    Article  Google Scholar 

  37. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A computational study of representations in genetic programming to evolve dispatching rules for the job shop scheduling problem. IEEE Trans. Evol. Comput. 17(5), 621–639 (2013)

    Article  Google Scholar 

  38. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Dynamic multi-objective job shop scheduling: a genetic programming approach. In: Etaner-Uyar, A.Ş., Özcan, E., Urquhart, N. (eds.) Automated Scheduling and Planning, Studies in Computational Intelligence, vol. 505, pp. 251–282. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  39. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Learning reusable initial solutions for multi-objective order acceptance and scheduling problems with genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) Genetic Programming, LNCS, vol. 7831, pp. 157–168. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  40. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. IEEE Trans. Evol. Comput. 18(2), 193–208 (2014)

    Article  Google Scholar 

  41. Nguyen, S.: Automatic design of dispatching rules for job shop scheduling with genetic programming. Ph.D. thesis, Victoria University of Wellington (2013)

    Google Scholar 

  42. Nie, L., Gao, L., Li, P., Li, X.: A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates. J. Intell. Manuf. 24(4), 763–774 (2013)

    Article  Google Scholar 

  43. Nie, L., Shao, X., Gao, L., Li, W.: Evolving scheduling rules with gene expression programming for dynamic single-machine scheduling problems. Int. J. Adv. Manuf. Technol. 50(5–8), 729–747 (2010)

    Article  Google Scholar 

  44. Nie, L., Bai, Y., Wang, X., Liu, K.: Discover scheduling strategies with gene expression programming for dynamic flexible job shop scheduling problem. In: Tan, Y., Shi, Y., Ji, Z. (eds.) Adv. Swarm Intell. 7332, 383–390 (2012)

    Google Scholar 

  45. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Manage. Sci. 42, 797–813 (1996)

    Article  Google Scholar 

  46. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing systems. J. Sched. 12(4), 417–431 (2009)

    Article  MathSciNet  Google Scholar 

  47. Petrovic, S., Fayad, C., Petrovic, D., Burke, E., Kendall, G.: Fuzzy job shop scheduling with lot-sizing. Ann. Oper. Res. 159, 275–292 (2008)

    Article  MathSciNet  Google Scholar 

  48. Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems. Int. J. Prod. Econ. 145(1), 67–77 (2013)

    Article  Google Scholar 

  49. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer, New York (2008)

    MATH  Google Scholar 

  50. Pinedo, M., Singer, M.: A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop. Naval Res. Logistics 46(1), 1–17 (1999)

    Article  MathSciNet  Google Scholar 

  51. Ponnambalam, S.G., Ramkumar, V., Jawahar, N.: A multiobjective genetic algorithm for job shop scheduling. Prod. Plann. Control 12(8) (2001)

    Article  Google Scholar 

  52. Potts, C.N., Strusevich, V.A.: Fifty years of scheduling: a survey of milestones. J. Oper. Res. Soc. 60(Supplement 1), 41–68 (2009). http://www.palgrave-journals.com/jors/journal/v60/ns1/abs/jors20092a.html

    Article  Google Scholar 

  53. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job shop scheduling problem under different flow time- and tardiness-related objective functions. Int. J. Prod. Res. 50(15), 4255–4270 (2011)

    Article  Google Scholar 

  54. Sha, D., Hsu, C.Y.: A hybrid particle swarm optimization for job shop scheduling problem. Comput. Ind. Eng. 51(4), 791–808 (2006)

    Article  Google Scholar 

  55. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–473 (2008)

    Article  Google Scholar 

  56. Wong, P., Zhang, M.: Algebraic simplification of gp programs during evolution. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. pp. 927–934. GECCO’06 (2006)

    Google Scholar 

  57. Xing, L.N., Chen, Y.W., Wang, P., Zhao, Q.S., Xiong, J.: A knowledge-based ant colony optimization for flexible job shop scheduling problems. Appl. Soft Comput. 10(3), 888–896 (2010)

    Article  Google Scholar 

  58. Yamada, T., Nakano, R.: A genetic algorithm with multi-step crossover for job-shop scheduling problems. In: GALESIA: First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications. pp. 146–151 (1995)

    Google Scholar 

  59. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject to machine breakdowns with genetic programming. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.C., McKay, B., Essam, D., Gedeon, T. (eds.) In: The 2003 Congress on Evolutionary Computation (CEC 2003), vol. 2, pp. 1050–1055. IEEE Press, Piscataway, NJ (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, S., Zhang, M., Johnston, M., Tan, K.C. (2019). Genetic Programming for Job Shop Scheduling. In: Bansal, J., Singh, P., Pal, N. (eds) Evolutionary and Swarm Intelligence Algorithms. Studies in Computational Intelligence, vol 779. Springer, Cham. https://doi.org/10.1007/978-3-319-91341-4_8

Download citation

Publish with us

Policies and ethics