Genetic Algorithm and Its Advances in Embracing Memetics

Part of the Studies in Computational Intelligence book series (SCI, volume 779)


A Genetic Algorithm (GA) is a stochastic search method that has been applied successfully for solving a variety of engineering optimization problems which are otherwise difficult to solve using classical, deterministic techniques. GAs are easier to implement as compared to many classical methods, and have thus attracted extensive attention over the last few decades. However, the inherent randomness of these algorithms often hinders convergence to the exact global optimum. In order to enhance their search capability, learning via memetics can be incorporated as an extra step in the genetic search procedure. This idea has been investigated in the literature, showing significant performance improvement. In this chapter, two research works that incorporate memes in distinctly different representations, are presented. In particular, the first work considers meme as a local search process, or an individual learning procedure, the intensity of which is governed by a theoretically derived upper bound. The second work treats meme as a building-block of structured knowledge, one that can be learned and transferred across problem instances for efficient and effective search. In order to showcase the enhancements achieved by incorporating learning via memetics into genetic search, case studies on solving the NP-hard capacitated arc routing problem are presented. Moreover, the application of the second meme representation concept to the emerging field of evolutionary bilevel optimization is briefly discussed.


Evolutionary optimization Genetic algorithm Memetics 


  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)Google Scholar
  2. 2.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  3. 3.
    Bransford, J., Brown, A., Cocking, R. (eds) How People Learn: Brain, Mind, Experience, and School - Expanded Edition (2000)Google Scholar
  4. 4.
    Chen, X.S., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 5, 591–607 (2011). (in Press)CrossRefGoogle Scholar
  5. 5.
    Ong, Y.S., Lim, M.H., Chen, X.S.: Research frontier: memetic computation - past, present & future. IEEE Comput. Intell. Mag. 5(2), 24–36 (2010)CrossRefGoogle Scholar
  6. 6.
    Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)Google Scholar
  7. 7.
    Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms. Studies in Computational Intelligence. Springer, Berlin (2011)Google Scholar
  8. 8.
    Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search for capacitated arc routing problems. IEEE Trans. Evol. Comput. 13(5), 1151–1166 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhu, Z., Ong, Y.S., Dash, M.: Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans. Syst. Man Cybern. - Part B 37(1), 70–76 (2007)CrossRefGoogle Scholar
  10. 10.
    Meuth, R., Lim, M.H., Ong, Y.S., Wunsch, D.: A proposition on memes and meta-memes in computing for higher-order learning. Memetic Comput. 1, 85–100 (2009)CrossRefGoogle Scholar
  11. 11.
    Feng, L., Ong, Y.S., Tsang, I.W., Tan, A.H.: An evolutionary search paradigm that learns with past experiences. In: IEEE World Congress on Computational Intelligence, Congress on Evolutionary Computation (2012)Google Scholar
  12. 12.
    Louis, S.J., McDonnell, J.: Learning with case-injected genetic algorithms. IEEE Trans. Evol. Comput. 8(4), 316–328 (2004)CrossRefGoogle Scholar
  13. 13.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimisation, and Machine Learning. Addison-Wesley, Reading, MA (1989)zbMATHGoogle Scholar
  14. 14.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA (1975)Google Scholar
  15. 15.
    Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)CrossRefGoogle Scholar
  16. 16.
    Thierens, D., Thierens, D.: Adaptive mutation rate control schemes in genetic algorithms. In: Proceedings of the 2002 IEEE World Congress on Computational Intelligence: Congress on Evolutionary Computation, pp. 980–985 (2002)Google Scholar
  17. 17.
    Ong, Y.S., Keane, A.J.: Meta-Lamarckian learning in memetic algorithms. IEEE Trans. Evol. Comput. 8(2), 99–110 (2004)CrossRefGoogle Scholar
  18. 18.
    Torn, A., Zilinskas, A.: Global Optimization. Lecture Notes in Computer Science, 350 (1989)Google Scholar
  19. 19.
    Houck, C., Joines, J., Kay, M.: Utilizing Lamarckian evolution and the Baldwin effect in hybrid genetic algorithms. NCSU-IE Technical Report 96-01, Meta-Heuristic Research and Applications Group, Department of Industrial Engineering, North Carolina State University (1996)Google Scholar
  20. 20.
    Vicini, A., Quagliarella, D.: Airfoil and wing design using hybrid optimization strategies. Am. Inst. Aeronaut. Astronaut. J. 37(5), 634–641 (1999)CrossRefGoogle Scholar
  21. 21.
    Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive problems via surrogate modeling. Am. Inst. Aeronaut. Astronaut. J. 41(4), 687–696 (2003)CrossRefGoogle Scholar
  22. 22.
    Le, M.N., Ong, Y.S., Jin, Y.C., Sendhoff, B.: Lamarckian memetic algorithms: local optimum and connectivity structure analysis. Memetic Comput. 1(3), 175–190 (2009)CrossRefGoogle Scholar
  23. 23.
    Gong, M.G., Liu, C., Jiao, L.C., Cheng, G.: Hybrid immune algorithm with Lamarckian local search for multi-objective optimization. Memetic Comput. 2(1), 47–67 (2009)CrossRefGoogle Scholar
  24. 24.
    Ting, C.K., Ko, C.F., Huang, C.H.: Selecting survivors in genetic algorithm using tabu search strategies. Memetic Comput. 1(3), 191–203 (2009)CrossRefGoogle Scholar
  25. 25.
    Shinkyu, J., Hasegawa, S., Shimoyama, K., Obayashi, S.: Development and investigation of efficient GA/PSO-HYBRID algorithm applicable to real-world design optimization. IEEE Comput. Intell. Mag. 4(3), 36–44 (2009)CrossRefGoogle Scholar
  26. 26.
    Sattar, A., Seguier, R.: HMOAM: hybrid multi-objective genetic optimization for facial analysis by appearance model. Memetic Comput. 2(1), 25–46 (2010)CrossRefGoogle Scholar
  27. 27.
    Ong, Y.S., Krasnogor, N., Ishibuchi, H.: Special issue on memetic algorithm. IEEE Trans. Syst. Man Cybern. - Part B 37(1), 2–5 (2007)CrossRefGoogle Scholar
  28. 28.
    Lim, M.H., Xu, Y.L.: Application of hybrid genetic algorithm in supply chain management. Int. J. Comput. Syst. Sign. 6(1) (2005)Google Scholar
  29. 29.
    Smith, J.E.: Co-evolving memetic algorithms: a review and progress report. IEEE Trans. Syst. Man Cybern. - Part B 37(1), 6–17 (2007)CrossRefGoogle Scholar
  30. 30.
    Liu, B., Wang, L., Jin, Y.H.: An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern. - Part B 37(1), 18–27 (2007)CrossRefGoogle Scholar
  31. 31.
    Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumne, M.: A fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Trans. Syst. Man Cybern. - Part B 37(1), 28–41 (2007)CrossRefGoogle Scholar
  32. 32.
    Liu, D., Tan, K.C., Goh, C.K., Ho, W.K.: A multiobjective memetic algorithm based on particle swarm optimization. IEEE Trans. Syst. Man Cybern. - Part B 37(1), 42–50 (2007)CrossRefGoogle Scholar
  33. 33.
    Hasan, S.M.K., Sarker, R., Essam, D., Cornforth, D.: Memetic algorithms for solving job-shop scheduling problems. Memetic Comput. 1(1), 69–83 (2008)CrossRefGoogle Scholar
  34. 34.
    Tang, M., Yao, X.: A memetic algorithm for VLSI floorplanning. IEEE Trans. Syst. Man Cybern. - Part B 37(1), 62–69 (2007)CrossRefGoogle Scholar
  35. 35.
    Tang, J., Lim, M.H., Ong, Y.S.: Parallel memetic algorithm with delective local search for large scale quadratic assignment problems. Int. J. Innovative Comput. Inf. Control 2(6), 1399–1416 (2006)Google Scholar
  36. 36.
    Tang, J., Lim, M.H., Ong, Y.S.: Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput. J. 11(9), 873–888 (2007)CrossRefGoogle Scholar
  37. 37.
    Nguyen, Q.H., Ong, Y.S., Lim, M.H.: A probabilistic memetic framework. IEEE Trans. Evol. Comput. 13(3), 604–623 (2009)CrossRefGoogle Scholar
  38. 38.
    Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: a comparative study. IEEE Trans. Syst. Man Cybern. B Cybern. 36(1), 141–152 (2006)CrossRefGoogle Scholar
  39. 39.
    Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)CrossRefGoogle Scholar
  40. 40.
    Hart, W.E.: Adaptive global optimization with local search. Ph.D. thesis, University of California, San Diego (1994)Google Scholar
  41. 41.
    Ku, K.W.C., Mak, M.W., Siu, W.C.: A study of the Lamarckian evolution of recurrent neural networks. IEEE Trans. Evol. Comput. 4(1), 31–42 (2000)CrossRefGoogle Scholar
  42. 42.
    Land, M.W.S.: Evolutionary algorithms with local search for combinatorial optimization. Ph.D. Thesis, University of California, San Diego (1998)Google Scholar
  43. 43.
    Goldberg, D.E., Voessner, S.: Optimizing global-local search hybrids. Genet. Evol. Comput. Conf. 1, 220–228 (1999)Google Scholar
  44. 44.
    Kendall, G., Cowling, P., Soubeiga, E.: Choice function and random hyperheuristics. In: Fourth Asia-Pacific Conference on Simulated Evolution and Learning, pp. 667–671 (2002)Google Scholar
  45. 45.
    Feng, L., Ong, Y.S., Nguyen, Q.H., Tan, A.-H.: Towards probabilistic memetic algorithm: an initial study on capacitated arc routing problem. In: IEEE Congress on Evolutionary Computation, pp. 18–23 (2010)Google Scholar
  46. 46.
    Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical dependence with hilbert-schmidt norms. In: Proceedings Algorithmic Learning Theory, pp. 63–77 (2005)Google Scholar
  47. 47.
    Zhuang, J., Tsang, I., Hoi, S.C.H.: A family of simple non-parametric kernel learning algorithms. J. Mach. Learn. Res. (JMLR) 12, 1313–1347 (2011)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. In: Proceedings of the 14th International Conference on Intelligent Systems for Molecular Biology, pp. 49–57 (2006)CrossRefGoogle Scholar
  49. 49.
    Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3), 305–315 (1981)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Eglese, R.W.: Routing winter gritting vehicles. Discrete Appl. Math. 48(3), 231C–244 (1994)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Eglese, R.W., Li, L.Y.O.: A tabu search based heuristic for arc routing with a capacity constraint and time deadline. In: Osman, I.H., Kelly, J.P. (eds.) Metaheuristics: Theory and Applications, pp. 633C–650. Kluwer Academic Publishers, Boston (1996)Google Scholar
  52. 52.
    Li, L.Y.O., Eglese, R.W.: An interactive algorithm for vehicle routing for winter-gritting. J. Oper. Res. Soc. 47(2), 217C–228 (1996)Google Scholar
  53. 53.
    Mei, Y., Tang, K., Yao, X.: Improved memetic algorithm for capacitated arc routing problem. In: IEEE Congress on Evolutionary Computation, pp. 1699–1706 (2009)Google Scholar
  54. 54.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269C–271 (1959)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer, Berlin (2005)zbMATHGoogle Scholar
  56. 56.
    Golden, B.L., DeArmon, J.S., Baker, E.K.: Computational experiments with algorithms for a class of routing problems. Comput. Oper. Res. 10(1), 47–59 (1983)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Ulusoy, G.: The fleet size and mix problem for capacitated arc routing. Eur. J. Oper. Res. 22(3), 329–337 (1985)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Sinha, A., Malo, P., Deb, K.: Test problem construction for single-objective bilevel optimization. Evol. Comput. J. (2014)Google Scholar
  59. 59.
    Gupta, A., Kelly, P.A., Ehrgott, M., Bickerton, S.: A surrogate model based evolutionary game-theoretic approach for optimizing non-isothermal compression RTM processes. Compos. Sci. Technol. 84, 92–100 (2013)CrossRefGoogle Scholar
  60. 60.
    Larsson, T., Lindberg, P.O., Patriksson, M., Rydergren, C.: On traffic equilibrium models with a nonlinear time/money relation. In: Patriksson, M., Labbe, M. (eds.) Transportation Planning: State of the Art, pp. 19–31. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.College of Computer ScienceChongqing UniversityChongqingChina

Personalised recommendations