Variational Methods for Gamut Mapping in Cinema and Television

  • Syed Waqas ZamirEmail author
  • Javier Vazquez-Corral
  • Marcelo Bertalmío
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


The cinema and television industries are continuously working in the development of image features that provide a better visual experience to viewers, increasing spatial resolution, frame rate, contrast, and recently, with emerging display technologies, much more vivid colors. For this reason there is a pressing need to develop fast, automatic and reliable gamut mapping algorithms that can transform the colors of the original content, adapting it to the capabilities of the display or projector system in which it is going to be viewed while at the same time respecting the artistic intent of the creator. In this article we present a review of our work on variational methods for gamut mapping that comply with some basic global and local properties of the human visual system, producing state-of-the-art results that appear natural and are perceptually faithful to the original material.


  1. 1.
    A. Alsam, I. Farup, Spatial colour gamut mapping by orthogonal projection of gradients onto constant hue lines, in Proceedings of 8th International Symposium on Visual Computing (2012), pp. 556–565Google Scholar
  2. 2.
    H. Anderson, E. Garcia, M. Gupta, Gamut expansion for video and image sets, in International Conference on Image Analysis and Processing Workshops (2007), pp. 188–191Google Scholar
  3. 3.
    S. Andriani, H. Brendel, T. Seybold, J. Goldstone, Beyond the Kodak image set: a new reference set of color image sequences, in IEEE International Conference on Image Processing (2013), pp. 2289–2293Google Scholar
  4. 4.
    R. Bala, R. Dequeiroz, R. Eschbach, W. Wu, Gamut mapping to preserve spatial luminance variations. J. Imaging Sci. Technol. 45, 122–128 (2001)Google Scholar
  5. 5.
    D. Bankston, The color-space conundrum, part one. American Cinematographer (2005), p. 6Google Scholar
  6. 6.
    Z. Barańczuk, P. Zolliker, J. Giesen, Image quality measures for evaluating gamut mapping, in Color and Imaging Conference (2009), pp. 21–26Google Scholar
  7. 7.
    R.S. Berns, The mathematical development of CIE TC 1–29 proposed colour difference equation: CIELCH, in Proceedings of the Seventh Congress of International Colour Association, B, C19.1–19.4 (1993)Google Scholar
  8. 8.
    M. Bertalmío, Image Processing for Cinema, vol. 4 (CRC Press/Taylor & Francis, Boca Raton, 2014)CrossRefGoogle Scholar
  9. 9.
    M. Bertalmío, V. Caselles, E. Provenzi, A. Rizzi, Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16(4), 1058–1072 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Bertalmío, V. Caselles, E. Provenzi, Issues about Retinex theory and contrast enhancement. Int. J. Comput. Vis. 83(1), 101–119 (2009)CrossRefGoogle Scholar
  11. 11.
    N. Bonnier, F. Schmitt, H. Brettel, S. Berche, Evaluation of spatial gamut mapping algorithms, in Proceedings of IS&T/SID 14th Color Imaging Conference (2006), pp. 56–61Google Scholar
  12. 12.
    G.J. Braun, A paradigm for color gamut mapping of pictorial images. Ph.D. thesis, Rochester Institute of Technology, Rochester, 1999Google Scholar
  13. 13.
    S.E. Casella, R.L. Heckaman, M.D. Fairchild, Mapping standard image content to wide-gamut displays, in Color and Imaging Conference (2008), pp. 106–111Google Scholar
  14. 14.
    X. Chen, Investigation of gamut extension algorithms. Master’s thesis, University of Derby, Derby, 2002Google Scholar
  15. 15.
    H.-C. Cheng, I. Ben-David, S.-T. Wu, Five-primary-color LCDs. J. Disp. Technol. 6(1), 3–7 (2010)CrossRefGoogle Scholar
  16. 16.
    E. Chino, K. Tajiri, H. Kawakami, H. Ohira, K. Kamijo, H. Kaneko, S. Kato, Y. Ozawa, T. Kurumisawa, K. Inoue, K. Endo, H. Moriya, T. Aragaki, K. Murai, Development of wide-color-gamut mobile displays with four-primary-color LCDs. SID Symp. Dig. Tech. Pap. 37(1), 1221–1224 (2006)CrossRefGoogle Scholar
  17. 17.
    CIE, Guidelines for the evaluation of gamut mapping algorithms. Technical report, CIE 156 (2004)Google Scholar
  18. 18.
    F. Dugay, I. Farup, J.Y. Hardeberg, Perceptual evaluation of color gamut mapping algorithms. Color Res. Appl. 33(6), 470–476 (2008)CrossRefGoogle Scholar
  19. 19.
    A.M. Eskicioglu, P.S. Fisher, Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)CrossRefGoogle Scholar
  20. 20.
    E.A. Fedorovskaya, H. de Ridder, F.J.J. Blommaert, Chroma variations and perceived quality of color images of natural scenes. Color Res. Appl. 22(2), 96–110 (1997)CrossRefGoogle Scholar
  21. 21.
    A. Ford, A. Roberts, Colour space conversions. (1998)
  22. 22.
    J. Froehlich, S. Grandinetti, B. Eberhardt, S. Walter, A. Schilling, H. Brendel, Creating cinematic wide gamut HDR-video for the evaluation of tone mapping operators and HDR-displays, in Proceedings of IS&T/SPIE Electronic Imaging (2014)Google Scholar
  23. 23.
    R.S. Gentile, E. Walowitt, J.P. Allebach, A comparison of techniques for color gamut mismatch compensation. J. Imaging Technol. 16, 176–181 (1990)Google Scholar
  24. 24.
    J.Y. Hardeberg, E. Bando, M. Pedersen, Evaluating colour image difference metrics for gamut-mapped images. Color. Technol. 124(4), 243–253 (2008)CrossRefGoogle Scholar
  25. 25.
    R.L. Heckaman, J. Sullivan, Rendering digital cinema and broadcast TV content to wide gamut display media. SID Symp. Dig. Tech. Pap. 42(1), 225–228 (2011)CrossRefGoogle Scholar
  26. 26.
    P.G. Herzog, M. Müller, Gamut mapping using an analytical color gamut representation, in Proceedings of Color Imaging: Device-Independent Color, Color Hard Copy, and Graphic Arts (1997), pp. 117–128Google Scholar
  27. 27.
    T. Hoshino, A preferred color reproduction method for the HDTV digital still image system, in Proceedings of IS&T Symposium on Electronic Photography (1991), pp. 27–32Google Scholar
  28. 28.
    T. Hoshino, Color estimation method for expanding a color image for reproduction in a different color gamut, May 1994. US Patent 5,317,426Google Scholar
  29. 29.
    ITU-R Recommendation BT.709-5, Parameter values for the HDTV standards for production and international programme exchange (2002)Google Scholar
  30. 30.
    ITU-R Recommendation BT.2020, Parameter values for ultra high definition television systems for production and international programme exchange (2012)Google Scholar
  31. 31.
    A.J. Johnson, Perceptual requirements of digital picture processing. Paper Presented at IARAIGAI Symposium and Printed in Part in Printing World (1979)Google Scholar
  32. 32.
    B.H. Kang, J. Morovič, M.R. Luo, M.S. Cho, Gamut compression and extension algorithms based on observer experimental data. ETRI J. 25(3), 156–170 (2003)CrossRefGoogle Scholar
  33. 33.
    N. Katoh, M. Ito, Gamut mapping for computer generated images (ii), in Proceedings of 4th IS&T/SID Color Imaging Conference (1996), pp. 126–129Google Scholar
  34. 34.
    G. Kennel, Color and Mastering for Digital Cinema: Digital Cinema Industry Handbook Series (Taylor & Francis, New York, 2007)CrossRefGoogle Scholar
  35. 35.
    M.C. Kim, Y.C. Shin, Y.R. Song, S.J. Lee, I.D. Kim, Wide gamut multi-primary display for HDTV, in Proceedings of 2nd European Conference on color Graphics, Imaging and Vision (2004), pp. 248–253Google Scholar
  36. 36.
    R. Kimmel, D. Shaked, M. Elad, I. Sobel, Space-dependent color gamut mapping: a variational approach. IEEE Trans. Image Process. 14, 796–803 (2005)CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Y. Kusakabe, Y. Iwasaki, Y. Nishida, Wide-color-gamut super hi-vision projector, in Proceedings ITE Annual Convention (in Japanese) (2013)Google Scholar
  39. 39.
    J. Laird, R. Muijs, J. Kuang, Development and evaluation of gamut extension algorithms. Color Res. Appl. 34(6), 443–451 (2009)CrossRefGoogle Scholar
  40. 40.
    C. Lau, W. Heidrich, R. Mantiuk, Cluster-based color space optimizations, in Proceedings of IEEE International Conference on Computer Vision, ICCV ’11 (2011), pp. 1172–1179Google Scholar
  41. 41.
    Y. Li, G. Song, H. Li, A multilevel gamut extension method for wide gamut displays, in Proceedings of International Conference on Electric Information and Control Engineering (ICEICE) (2011), pp. 1035–1038Google Scholar
  42. 42.
    Y. Ling, Investigation of a gamut extension algorithm. Master’s thesis, University of Derby, Derby, 2001Google Scholar
  43. 43.
    I. Lissner, J. Preiss, P. Urban, M.S. Lichtenauer, P. Zolliker, Image-difference prediction: from grayscale to color. IEEE Trans. Image Process. 22(2), 435–446 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Y. Liu, G. Song, H. Li, A hue-preserving gamut expansion algorithm in CIELUV color space for wide gamut displays, in Proceedings of the 3rd International Congress on Image and Signal Processing (CISP) (2010), pp. 2401–2404Google Scholar
  45. 45.
    M.R. Luo, G. Cui, B. Rigg, The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 26(5), 340–350 (2001)CrossRefGoogle Scholar
  46. 46.
    G. Marcu, S. Abe, Gamut mapping for color simulation on CRT devices, in Proceedings of Color Imaging: Device-Independent Color, Color Hard Copy, and Graphic Arts (1996)Google Scholar
  47. 47.
    K. Masaoka, Y. Kusakabe, T. Yamashita, Y. Nishida, T. Ikeda, M. Sugawara, Algorithm design for gamut mapping from UHDTV to HDTV. J. Disp. Technol. 12(7), 760–769 (2016)CrossRefGoogle Scholar
  48. 48.
    J.J. McCann, Lessons learned from mondrians applied to real images and color gamuts, in Proceedings of Color Imaging Conference (1999), pp. 1–8Google Scholar
  49. 49.
    J.J. McCann, A spatial colour gamut calculation to optimize colour appearance, in Colour Image Science: Exploiting Digital Media (2002), pp. 213–233Google Scholar
  50. 50.
    X. Meng, G. Song, H. Li, A human skin-color-preserving extension algorithm for wide gamut displays, in Proceedings of International Conference on Information Technology and Software Engineering. Lecture Notes in Electrical Engineering (Springer, Berlin, 2013), pp. 705–713Google Scholar
  51. 51.
    J. Meyer, B. Barth, Color gamut matching for hard copy, in Proceedings of SID Digest (1989), pp. 86–89Google Scholar
  52. 52.
    E.D. Montag, M.D. Fairchild, Psychophysical evaluation of gamut mapping techniques using simple rendered images and artificial gamut boundaries. IEEE Trans. Image Process. 6(7), 977–989 (1997)CrossRefGoogle Scholar
  53. 53.
    J. Morovič, To develop a universal Gamut mapping algorithm. Ph.D. thesis, University of Derby, Derby, 1998Google Scholar
  54. 54.
    J. Morovič, Color Gamut Mapping, vol. 10 (Wiley, Chichester, 2008)CrossRefGoogle Scholar
  55. 55.
    J. Morovič, Y. Wang, A multi-resolution, full-colour spatial gamut mapping algorithm, in Proceedings of Color Imaging Conference (2003), pp. 282–287Google Scholar
  56. 56.
    R. Muijs, J. Laird, J. Kuang, S. Swinkels, Subjective evaluation of gamut extension methods for wide-gamut displays, in Proceedings of the 13th International Display Workshop (2006), pp. 1429–1432Google Scholar
  57. 57.
    G.M. Murch, J.M. Taylor, Color in computer graphics: manipulating and matching color, in Eurographics Seminar: Advances in Computer Graphics V (1989), pp. 41–47Google Scholar
  58. 58.
    S. Nakauchi, S. Hatanaka, S. Usui, Color gamut mapping based on a perceptual image difference measure. Color Res. Appl. 24(4), 280–291 (1999)CrossRefGoogle Scholar
  59. 59.
    H. Pan, S. Daly, A gamut-mapping algorithm with separate skin and non-skin color preference controls for wide-color-gamut TV. SID Symp. Dig. Tech. Pap. 39(1), 1363–1366 (2008)CrossRefGoogle Scholar
  60. 60.
    M.R. Pointer, The gamut of real surface colours. Color Res. Appl. 5(3), 145–155 (1980)CrossRefGoogle Scholar
  61. 61.
    C. Poynton, Contrast, brightness, and the naming of things. Poynton’s Vector 1 (2010)Google Scholar
  62. 62.
    J. Preiss, P. Urban, Image-difference measure optimized gamut mapping, in Proceedings of IS&T/SID 20th Color Imaging Conference (2012), pp. 230–235Google Scholar
  63. 63.
    J. Preiss, F. Fernandes, P. Urban, Color-image quality assessment: from prediction to optimization. IEEE Trans. Image Process. 23(3), 1366–1378 (2014)MathSciNetCrossRefGoogle Scholar
  64. 64.
    S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, O. Ben-David, Wide gamut, high brightness multiple primaries single panel projection displays. SID Symp. Dig. Tech. Pap. 34(1), 118–121 (2003)CrossRefGoogle Scholar
  65. 65.
    J.J. Sara, The automated reproduction of pictures with nonreproducible colors. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, 1984Google Scholar
  66. 66.
    F. Schweiger, T. Borer, M. Pindoria, Luminance-preserving colour conversion, in SMPTE Annual Technical Conference and Exhibition (2016), pp. 1–9Google Scholar
  67. 67.
    B.D. Silverstein, A.F. Kurtz, J.R. Bietry, G.E. Nothhard, A laser-based digital cinema projector. SID Symp. Dig. Tech. Pap. 42(1), 326–329 (2011)CrossRefGoogle Scholar
  68. 68.
    SMPTE RP 431-2:2011, D-cinema quality – reference projector and environment (2011)Google Scholar
  69. 69.
    G. Song, H. Cao, H. Huang, Hue preserving multi-level expansion method based on saturation for wide gamut displays. J. Inf. Comput. Sci. 11(2), 461–472 (2014)CrossRefGoogle Scholar
  70. 70.
    G. Song, X. Meng, H. Li, Y. Han, Skin color region protect algorithm for color gamut extension. J. Inf. Comput. Sci. 11(6), 1909–1916 (2014)CrossRefGoogle Scholar
  71. 71.
    J.M. Taylor, G.M. Murch, P. McManus, Tektronix HVC: a uniform perceptual color system for display users, in SID Symposium Digest of Technical Papers (1989)Google Scholar
  72. 72.
    W.S. Torgerson, A law of categorical judgment, consumer behaviour, in Consumer Behaviour (New York University Press, New York, 1954), pp. 92–93Google Scholar
  73. 73.
    S. Ueki, K. Nakamura, Y. Yoshida, T. Mori, K. Tomizawa, Y. Narutaki, Y. Itoh, K. Okamoto, Five-primary-color 60-inch LCD with novel wide color gamut and wide viewing angle. SID Symp. Dig. Tech. Pap. 40(1), 927–930 (2009)CrossRefGoogle Scholar
  74. 74.
    UGRA, UGRA GAMCOM version 1.1: Program for the color gamut compression and for the comparison of calculated and measured values. Technical report, UGRA, St. Gallen, 17 July 1995Google Scholar
  75. 75.
    Y.-C. Yang, K. Song, S.G. Rho, N.-S. Rho, S.J. Hong, K.B. Deul, M. Hong, K. Chung, W.H. Choe, S. Lee, C.Y. Kim, S.-H. Lee, H.-R. Kim, Development of six primary-color LCD. SID Symp. Dig. Tech. Pap. 36(1), 1210–1213 (2005)CrossRefGoogle Scholar
  76. 76.
    S. W. Zamir, J. Vazquez-Corral, M. Bertalmío, Gamut mapping in cinematography through perceptually-based contrast modification. IEEE J. Sel. Top. Sign. Process. 8(3), 490–503 (2014)CrossRefGoogle Scholar
  77. 77.
    S.W. Zamir, J. Vazquez-Corral, M. Bertalmío, Gamut extension for cinema: psychophysical evaluation of the state of the art, and a new algorithm, in Proceedings of IS&T/SPIE Electronic Imaging (2015), pp. 1–12Google Scholar
  78. 78.
    S.W. Zamir, J. Vazquez-Corral, M. Bertalmío, Perceptually-based gamut extension algorithm for emerging wide color gamut display and projection technologies, in SMPTE Annual Technical Conference and Exhibition (2016), pp. 1–11Google Scholar
  79. 79.
    S.W. Zamir, J. Vazquez-Corral, M. Bertalmío, Gamut extension for cinema. IEEE Trans. Image Process. 26(4), 1595–1606 (2017)MathSciNetCrossRefGoogle Scholar
  80. 80.
    S.W. Zamir, J. Vazquez-Corral, M. Bertalmío, Gamut reduction through local saturation reduction, in Color and Imaging Conference (2017), pp. 214–218Google Scholar
  81. 81.
    P. Zolliker, K. Simon, Retaining local image information in gamut mapping algorithms. IEEE Trans. Image Process. 16(3), 664–672 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Syed Waqas Zamir
    • 1
    Email author
  • Javier Vazquez-Corral
    • 1
  • Marcelo Bertalmío
    • 1
  1. 1.Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations