Synchronized Recovery Method for Multi-Rank Symmetric Tensor Decomposition

  • Haixia Liu
  • Lizhang MiaoEmail author
  • Yang Wang
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Symmetric tensor decomposition is of great importance in applications. In this paper, we design a synchronized multi-rank symmetric Tensor Decomposition alternating minimization method. In this algorithm, we start from a careful initialization for the non-convex symmetric tensor decomposition and then perform an alternating minimization algorithm. Our contributions are as follows: (1) Our method is synchronized and there is no need for a greedy algorithm to get the multi-rank tensor decomposition . (2) Initialization is an important part in our proposed method. With a careful initialization, our proposed algorithm can converge to the global minimizer of the non-convex objective function. (3) The designed alternating minimization algorithm can give a highly accurate result. In numerical results, our proposed algorithm is much better than the simple gradient descent method from the same initialization. Moreover, our results show that with eigenvectors of random projection as initialization, we can quickly get the global solution by using simple alternating minimization algorithm, though finding the global minimum of this non-convex minimization problem is NP-hard .


  1. 1.
    A. Anandkumar, R. Ge, D. Hsu, S.M. Kakade, M. Telgarsky. Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15(1), 2773–2832 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    K. Batselier, N. Wong, Symmetric tensor decomposition by an iterative eigen decomposition algorithm. J. Comput. Appl. Math. 308, 69–82 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Brachat, P. Comon, B. Mourrain, E. Tsigaridas, Symmetric tensor decomposition, in Signal Processing Conference, 2009 17th European (IEEE, New York, 2009), pp. 525–529Google Scholar
  4. 4.
    J.-F. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 86(10), 2009–2025 (1998)CrossRefGoogle Scholar
  5. 5.
    P. Chevalier, Optimal separation of independent narrow-band sources: concept and performance. Signal Process. 73(1), 27–47 (1999)CrossRefGoogle Scholar
  6. 6.
    A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, vol. 1 (Wiley, New York, 2002)CrossRefGoogle Scholar
  7. 7.
    P. Comon, M. Rajih, Blind identification of under-determined mixtures based on the characteristic function. Signal Process. 86(9), 2271–2281 (2006)CrossRefGoogle Scholar
  8. 8.
    P. Comon, G. Golub, L.-H. Lim, B. Mourrain, Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    L. De Lathauwer, J. Castaing, Tensor-based techniques for the blind separation of DS-CDMA signals. Signal Process. 87(2), 322–336 (2007)CrossRefGoogle Scholar
  10. 10.
    L. De Lathauwer, B. De Moor, J. Vandewalle, A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Deng, H. Liu, K. Batselier, Y.-K. Kwok, N. Wong, STORM: a nonlinear model order reduction method via symmetric tensor decomposition, in 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, New York, 2016), pp. 557–562Google Scholar
  12. 12.
    D.L. Donoho, X. Huo, Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A.T. Erdogan, On the convergence of ICA algorithms with symmetric orthogonalization. IEEE Trans. Signal Process. 57(6), 2209–2221 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Ferreol, P. Chevalier, On the behavior of current second and higher order blind source separation methods for cyclostationary sources. IEEE Trans. Signal Process. 48(6), 1712–1725 (2000)CrossRefGoogle Scholar
  15. 15.
    B. Jiang, S. Ma, S. Zhang. Tensor principal component analysis via convex optimization. Math. Programm. 150(2), 423–457 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Kofidis, P.A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    T.G. Kolda, Symmetric orthogonal tensor decomposition is trivial (2015). arXiv preprint arXiv:1503.01375Google Scholar
  18. 18.
    T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    T.G. Kolda, J.R. Mayo, Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    T.G. Kolda, J.R. Mayo, An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35(4), 1563–1581 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)MathSciNetCrossRefGoogle Scholar
  22. 22.
    L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach (2006). arXiv preprint math/0607648Google Scholar
  23. 23.
    L. Qi, Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    L. Qi, F. Wang, Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem. Math. Programm. 118(2), 301–316 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    P.A. Regalia, E. Kofidis, Monotonic convergence of fixed-point algorithms for ICA. IEEE Trans. Neural Netw. 14(4), 943–949 (2003)CrossRefGoogle Scholar
  26. 26.
    N.D. Sidiropoulos, R. Bro, G.B. Giannakis, Parallel factor analysis in sensor array processing. IEEE Trans. Signal Process. 48(8), 2377–2388 (2000)CrossRefGoogle Scholar
  27. 27.
    N.D. Sidiropoulos, G.B. Giannakis, R. Bro. Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans. Signal Process. 48(3), 810–823 (2000)CrossRefGoogle Scholar
  28. 28.
    L.I. Smith, A tutorial on principal components analysis. Cornell University, USA, 51:52 (2002)Google Scholar
  29. 29.
    A. Swami, G. Giannakis, S. Shamsunder, Multichannel ARMA processes. IEEE Trans. Signal Process. 42(4), 898–913 (1994)CrossRefGoogle Scholar
  30. 30.
    A.-J. Van Der Veen, A. Paulraj, An analytical constant modulus algorithm. IEEE Trans. Signal Process. 44(5), 1136–1155 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceHarbin Institute of Technology (Shenzhen)ShenzhenChina
  2. 2.Department of MathematicsThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong

Personalised recommendations