Skip to main content

Adaptive Regularization for Image Reconstruction from Subsampled Data

  • Conference paper
  • First Online:
Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE 2016)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 491 Accesses

Abstract

Choices of regularization parameters are central to variational methods for image restoration . In this paper, a spatially adaptive (or distributed) regularization scheme is developed based on localized residuals, which properly balances the regularization weight between regions containing image details and homogeneous regions. Surrogate iterative methods are employed to handle given subsampled data in transformed domains, such as Fourier or wavelet data. In this respect, this work extends the spatially variant regularization technique previously established in Dong et al. (J Math Imaging Vis 40:82–104, 2011), which depends on the fact that the given data are degraded images only. Numerical experiments for the reconstruction from partial Fourier data and for wavelet inpainting prove the efficiency of the newly proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Almansa, C. Ballester, V. Caselles, G. Haro, A TV based restoration model with local constraints. J. Sci. Comput. 34, 209–236 (2008)

    Article  MathSciNet  Google Scholar 

  2. M. Bertalmio, V. Caselles, B. Rougé, A. Solé, TV based image restoration with local constraints. J. Sci. Comput. 19, 95–122 (2003)

    Article  MathSciNet  Google Scholar 

  3. A. Bovik, Handbook of Image and Video Processing (Academic, San Diego, 2000)

    MATH  Google Scholar 

  4. A. Buades, B. Coll, J.-M. Morel, A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  5. A. Chambolle, An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  6. A. Chambolle, P.-L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  Google Scholar 

  7. T.F. Chan, J. Shen, H.-M. Zhou, Total variation wavelet inpainting. J. Math. Imaging Vision 25, 107–125 (2006)

    Article  MathSciNet  Google Scholar 

  8. Q. Chang, I.-L. Chern, Acceleration methods for total variation based image denoising. SIAM J. Appl. Math. 25, 982–994 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Q. Chen, P. Montesinos, Q.S. Sun, P.A. Heng, D.S. Xia, Adaptive total variation denoising based on difference curvature. Image Vis. Comput. 28, 298–306 (2010)

    Article  Google Scholar 

  10. K. Chen, E.L. Piccolomini, F. Zama, An automatic regularization parameter selection algorithm in the total variation model for image deblurring. Numer. Algorithms 67, 73–92 (2014)

    Article  MathSciNet  Google Scholar 

  11. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)

    Book  Google Scholar 

  12. I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MathSciNet  Google Scholar 

  13. I. Daubechies, G. Teschke, L. Vese, Iteratively solving linear inverse problems under general convex constraints. Inverse Prob. Imaging 1, 29–46 (2007)

    Article  MathSciNet  Google Scholar 

  14. D.C. Dobson, C.R. Vogel, Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34, 1779–1791 (1997)

    Article  MathSciNet  Google Scholar 

  15. Y. Dong, M. Hintermüller, M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40, 82–104 (2011)

    Article  MathSciNet  Google Scholar 

  16. K. Frick, P. Marnitz, Statistical multiresolution Dantzig estimation in imaging: fundamental concepts and algorithmic framework. Electron. J. Stat. 6, 231–268 (2012)

    Article  MathSciNet  Google Scholar 

  17. K. Frick, P. Marnitz, A. Munk, Statistical multiresolution estimation for variational imaging: with an application in Poisson-biophotonics. J. Math. Imaging Vision 46, 370–387 (2013)

    Article  MathSciNet  Google Scholar 

  18. R. Giryes, M. Elad, Y.C. Eldar, The projected GSURE for automatic parameter tuning in iterative shrinkage methods. Appl. Comput. Harmon. Anal. 30, 407–422 (2011)

    Article  MathSciNet  Google Scholar 

  19. T. Goldstein, S. Osher, The split Bregman method for 1 regularized problems. SIAM J. Imaging Sci. 2, 1311–1333 (2009)

    Article  MathSciNet  Google Scholar 

  20. C. He, C. Hu, W. Zhang, B. Shi, A fast adaptive parameter estimation for total variation image restoration. IEEE Trans. Image Process. 23, 4954–4967 (2014)

    Article  MathSciNet  Google Scholar 

  21. M. Hintermüller, K. Kunisch, Total bounded variation regularization as bilaterally constrained optimization problem. SIAM J. Appl. Math. 64, 1311–1333 (2004)

    Article  MathSciNet  Google Scholar 

  22. M. Hintermüller, C.N. Rautenberg, Optimal selection of the regularization function in a weighted total variation model. Part I: modelling and theory. J. Math. Imaging Vision 59(3), 498–514 (2017)

    MATH  Google Scholar 

  23. M. Hintermüller, M.M. Rincon-Camacho, Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L 1-TV-based image restoration. Inverse Prob. 26, 085005 (2010)

    Article  MathSciNet  Google Scholar 

  24. M. Hintermüller, G. Stadler, An infeasible primal-dual algorithm for total bounded variation-based Inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)

    Article  MathSciNet  Google Scholar 

  25. M. Hintermüller, C.N. Rautenberg, T. Wu, A. Langer, Optimal selection of the regularization function in a weighted total variation model. Part II: algorithm, its analysis and numerical tests. J. Math. Imaging Vision 59(3), 515–533 (2017)

    Article  MathSciNet  Google Scholar 

  26. T. Hotz, P. Marnitz, R. Stichtenoth, L. Davies, Z. Kabluchko, A. Munk, Locally adaptive image denoising by a statistical multiresolution criterion. Comput. Stat. Data Anal. 56(33), 543–558 (2012)

    MathSciNet  MATH  Google Scholar 

  27. F. Lenzen, F. Becker, J. Lellmann, S. Petra, C. Schnörr, A class of quasi-variational inequalities for adaptive image denoising and decomposition. Comput. Optim. Appl. 54, 371–398 (2013)

    Article  MathSciNet  Google Scholar 

  28. F. Lenzen, J. Lellmann, F. Becker, C. Schnörr, Solving quasi-variational inequalities for image restoration with adaptive constraint sets. SIAM J. Imaging Sci. 7, 2139–2174 (2014)

    Article  MathSciNet  Google Scholar 

  29. S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MathSciNet  Google Scholar 

  30. Y. Ruan, H. Fang, Q. Chen, Semiblind image deconvolution with spatially adaptive total variation regularization. Math. Probl. Eng. 2014(606170), 8 (2014)

    Google Scholar 

  31. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  32. D. Strong, T. Chan, Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. Technical report, UCLA (1996)

    Google Scholar 

  33. D. Strong, T. Chan, Edge-preserving and scale-dependent properties of total variation regularization. Inverse Prob. 19, 165–187 (2003)

    Article  MathSciNet  Google Scholar 

  34. D. Strong, J.-F. Aujol, T. Chan, Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization. Technical report, UCLA (2005)

    Google Scholar 

  35. C. Sutour, C.-A. Deledalle, J.-F. Aujol, Adaptive regularization of the NL-means: application to image and video denoising. IEEE Trans. Image Process. 23, 3506–3521 (2014)

    Article  MathSciNet  Google Scholar 

  36. E. Tadmor, S. Nezzar, L. Vese, A multiscale image representation using hierarchical (BV, L 2) decompositions. Multiscale Moel. Simul. 2, 554–579 (2004)

    Article  MathSciNet  Google Scholar 

  37. E. Tadmor, S. Nezzar, L. Vese, Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation. Commun. Math. Sci. 6, 1–26 (2008)

    Article  MathSciNet  Google Scholar 

  38. C.R. Vogel, Computational Methods for Inverse Problems. Frontiers in Applied Mathematics, vol. 23 (SIAM, Philadelphia, 2002)

    Google Scholar 

  39. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  40. Y.-W. Wen, R.H. Chan, Parameter selection for total -variation-based image restoration using discrepancy principle. IEEE Trans. Image Process. 21, 1770–1781 (2012)

    Article  MathSciNet  Google Scholar 

  41. L. Yan, H. Fang, S. Zhong, Blind image deconvolution with spatially adaptive total variation regularization. Opt. Lett. 37, 2778–2780 (2012)

    Article  Google Scholar 

  42. Q. Yuan, L. Zhang, H. Shen, Multiframe super-resolution employing a spatially weighted total variation model. IEEE Trans. Circuits Syst. Video Technol. 22, 379–392 (2012)

    Article  Google Scholar 

  43. Q. Yuan, L. Zhang, H. Shen, Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering. IEEE Trans. Image Process. 22, 2327–2342 (2013)

    Article  MathSciNet  Google Scholar 

  44. X. Zhang, T.F. Chan, Wavelet inpainting by nonlocal total variation. Inverse Prob. Imaging 4, 191–210 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Austrian Science Fund (FWF) through START-Project Y305 “Interfaces and Free Boundaries” and SFB-Project F3204 “Mathematical Optimization and Applications in Biomedical Sciences”, the German Research Foundation DFG through Project HI1466/7-1 “Free Boundary Problems and Level Set Methods”, as well as the Research Center MATHEON through Project C-SE15 “Optimal Network Sensor Placement for Energy Efficiency” supported by the Einstein Center for Mathematics Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hintermüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hintermüller, M., Langer, A., Rautenberg, C.N., Wu, T. (2018). Adaptive Regularization for Image Reconstruction from Subsampled Data. In: Tai, XC., Bae, E., Lysaker, M. (eds) Imaging, Vision and Learning Based on Optimization and PDEs. IVLOPDE 2016. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-91274-5_1

Download citation

Publish with us

Policies and ethics