Self-adaptive Model Checking, the Next Step?

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10877)


Model checking is becoming a popular verification method that still suffers from combinatorial explosion when used on large industrial systems. Currently, experts can, in some cases, overcome this complexity by selecting appropriate modeling and verification techniques, as well as an adapted representation of the system. Unfortunately, this cannot yet be done automatically, thus hindering the use of model checking in industry.

The objective of this paper is to sketch a way to tackle this problem by introducing self-adaptive model checking. This is a long term goal that could lead the community to elaborate a new generation of model checkers able to successfully push forwards the scale of the systems they can deal with.


Verification Model checking Formal methods and methodology Benchmark for verification 


  1. 1.
    Baarir, S., Duret-Lutz, A.: Sat-based minimization of deterministic \(\omega \)-automata. In: 20th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR, pp. 79–87 (2015)CrossRefGoogle Scholar
  2. 2.
    Ben Salem, A.E., Duret-Lutz, A., Kordon, F., Thierry-Mieg, Y.: Symbolic model checking of stutter-invariant properties using generalized testing automata. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 440–454. Springer, Heidelberg (2014). Scholar
  3. 3.
    Berthomieux, B., Bodeveix, J.P., Filali, M., Lang, F., Le Botland, D., Vernadat, F.: The syntax and semantic of fiacre. Technical report 7264, CNRS-LAAS (2007)Google Scholar
  4. 4.
    Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking of linear time logic properties. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999). Scholar
  5. 5.
    Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005). Scholar
  6. 6.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford University (1960, 1962)Google Scholar
  7. 7.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 10\(^{\hat{}}\)20 states and beyond. Inf. Comput. 98(2), 142–170 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11), 1343–1360 (1993)CrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Jha, S., Marrero, W.R.: Efficient verification of security protocols using partial-order reductions. STTT 4(2), 173–188 (2003)CrossRefGoogle Scholar
  11. 11.
    Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Towards distributed software model-checking using decision diagrams. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 830–845. Springer, Heidelberg (2013). Scholar
  12. 12.
    Duflot, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A formal analysis of bluetooth device discovery. STTT 8(6), 621–632 (2006)CrossRefGoogle Scholar
  13. 13.
    Duret-Lutz, A., Klai, K., Poitrenaud, D., Thierry-Mieg, Y.: Self-loop aggregation product—a new hybrid approach to on-the-fly LTL model checking. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 336–350. Springer, Heidelberg (2011). Scholar
  14. 14.
    Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). Scholar
  15. 15.
    Evangelista, S., Haddad, S., Pradat-Peyre, J.: Syntactical colored petri nets reductions. In: Automated Technology for Verification and Analysis, Third International Symposium, ATVA. pp. 202–216 (2005)CrossRefGoogle Scholar
  16. 16.
    Garavel, H.: Nested-unit petri nets: a structural means to increase efficiency and scalability of verification on elementary nets. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 179–199. Springer, Cham (2015). Scholar
  17. 17.
    Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer, Heidelberg (2006). Scholar
  18. 18.
    Gerth, R.: Model checking if your life depends on it: a view from intel’s trenches. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, p. 15. Springer, Heidelberg (2001). Scholar
  19. 19.
    Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg (2002). Scholar
  20. 20.
    Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierarchical set decision diagrams and automatic saturation. Fundam. Inf. 94(3–4), 413–437 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri Net Markup Language and ISO/IEC 15909–2. In: Petri Net Newsletter (originally presented at the 10th International workshop on Practical Use of Colored Petri Nets and the CPN Tools - CPN 2009), vol. 76, pp. 9–28 (2009)Google Scholar
  22. 22.
    Holzmann, G.: The Spin Model Checker: Primer and Reference Manual, 1st edn. Addison-Wesley Professional, Boston (2003)Google Scholar
  23. 23.
    Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)CrossRefGoogle Scholar
  24. 24.
    Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Baarir, S., Vergnaud, T.: On the formal verification of middleware behavioral properties. In: 9th International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2004), pp. 139–157. Elsevier (2004)CrossRefGoogle Scholar
  25. 25.
    Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). Scholar
  26. 26.
    Klai, K., Poitrenaud, D.: MC-SOG: an LTL model checker based on symbolic observation graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 288–306. Springer, Heidelberg (2008). Scholar
  27. 27.
    Kordon, F., Leuschel, M., van de Pol, J., Thierry-Mieg, Y.: Software architecture of modern model checkers. In: High Assurance System: Methods, Languages, and Tools. LNCS 10000 (2018, to appear)Google Scholar
  28. 28.
    Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel, L., Rodríguez, C., Hulin-Hubard, F.: MCC’2015 – the fifth model checking contest. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 262–273. Springer, Heidelberg (2016). Scholar
  29. 29.
    McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993). Scholar
  30. 30.
    Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. AMS 141, 1–35 (1969)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Strength-based decomposition of the property Büchi automaton for faster model checking. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 580–593. Springer, Heidelberg (2013). Scholar
  32. 32.
    Schröter, C., Schwoon, S., Esparza, J.: The model-checking kit. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer, Heidelberg (2003). Scholar
  33. 33.
    Schwarick, M., Heiner, M.: CSL model checking of biochemical networks with interval decision diagrams. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 296–312. Springer, Heidelberg (2009). Scholar
  34. 34.
    Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Inf. Control 54(1/2), 121–141 (1982)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015). Scholar
  36. 36.
    Wang, F., Schmidt, K., Yu, F., Huang, G., Wang, B.: BDD-based safety-analysis of concurrent software with pointer data structures using graph automorphism symmetry reduction. IEEE Trans. Softw. Eng. 30(6), 403–417 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sorbonne UniversitéParisFrance

Personalised recommendations