Integrating Simulink Models into the Model Checker Cosmos

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10877)


We present an implementation for Simulink model executions in the statistical model-checker Cosmos. We take profit of this implementation for hybrid modeling and simulations combining Petri nets and Simulink models.


Performance evaluation Hybrid systems Statistical model checking Simulink 


  1. 1.
    Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow models to hybrid automata using graph transformations. Electr. Notes Theor. Comput. Sci. 109, 43–56 (2004)CrossRefGoogle Scholar
  2. 2.
    Ballarini, P., Barbot, B., Duflot, M., Haddad, S., Pekergin, N.: HASL: a new approach for performance evaluation and model checking from concepts to experimentation. Perform. Eval. 90, 53–77 (2015)CrossRefGoogle Scholar
  3. 3.
    Ballarini, P., Duflot, M.: Applications of an expressive statistical model checking approach to the analysis of genetic circuits. Theor. Comput. Sci. 599, 4–33 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barbot, B., Ballarini, P., Djafri, H.:
  5. 5.
    Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for timed automata with application to language inclusion measurement. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 175–190. Springer, Cham (2016). Scholar
  6. 6.
    Barbot, B., Bérard, B., Duplouy, Y., Haddad, S.: Integrating simulink models into the model checker cosmos. Research report, March 2018.
  7. 7.
    Barbot, B., Haddad, S., Heiner, M., Picaronny, C.: Rare event handling in signalling cascades. Int. J. Adv. Syst. Meas. 8(1–2), 69–79 (2015)Google Scholar
  8. 8.
    Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for statistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 331–346. Springer, Heidelberg (2012). Scholar
  9. 9.
    Barbot, B., Kwiatkowska, M., Mereacre, A., Paoletti, N.: Building power consumption models from executable timed I/O automata specifications. In: Proceedings of HSCC 2016, pp. 195–204. ACM (2016)Google Scholar
  10. 10.
    Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M.: Non-standard semantics of hybrid systems modelers. J. Comput. Syst. Sci. 78(3), 877–910 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bouissou, O., Chapoutot, A.: An operational semantics for simulink’s simulation engine. In: Proceedings of the 13th ACM SIGPLAN/SIGBED, LCTES 2012, pp. 129–138. ACM, New York (2012)Google Scholar
  12. 12.
    Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Stat. 36, 457–462 (1965)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Clopper, C., Pearson, E.S.: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934)CrossRefGoogle Scholar
  14. 14.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tiwari, A.: Formal semantics and analysis methods for simulink stateflow models. Technical report, SRI (2002)Google Scholar
  16. 16.
    Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink to Lustre. ACM Trans. Embed. Comput. Syst. 4(4), 779–818 (2005)CrossRefGoogle Scholar
  17. 17.
    Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LACL, Université Paris -Est CréteilCréteilFrance
  2. 2.Sorbonne Université, LIP6, CNRS UMR 7606ParisFrance
  3. 3.IRT SystemX, Paris-SaclayPalaiseauFrance
  4. 4.LSV, ENS Paris-Saclay, CNRS, InriaUniversité Paris-SaclayCachanFrance

Personalised recommendations