Skip to main content

Feature Selection for ‘Orange Skin’ Type Surface Defect in Furniture Elements

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Abstract

The surfaces of furniture elements having the orange skin surface defect were investigated in the context of selecting optimum features for surface classification. Features selected from a set of 50 features were considered. Seven feature selection methods were used. The results of these selections were aggregated and found consistently positive for some of the features. Among them were primarily the features based on local adaptive thresholding and on Hilbert curves used to evaluate the image brightness variability. These types of features should be investigated further in order to find the features with more significance in the problem of surface quality inspection. The groups of features which appeared least profitable in the analysis were the two features based on percolation, and the one based on Otsu global thresholding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This does not concern CFS, where features are not sequenced; in this method, the following features were selected: \(\{ 2, 3, 13, 14, 23, 24, 28, 34, 39, 40, 41, 43, 45, 47\}\).

References

  1. Chmielewski, L.J., Orłowski, A., Wieczorek, G., Śmietańska, K., Górski, J.: Testing the limits of detection of the orange ‘skin’ defect in furniture elements with the HOG features. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10192, pp. 276–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54430-4_27

    Chapter  Google Scholar 

  2. Karras, D.A.: Improved defect detection using support vector machines and wavelet feature extraction based on vector quantization and SVD techniques. In: Proceedings of International Joint Conference on Neural Networks, vol. 3, pp. 2322–2327, July 2003. https://doi.org/10.1109/IJCNN.2003.1223774

  3. Musat, E.C., Salca, E.A., Dinulica, F., et al.: Evaluation of color variability of oak veneers for sorting. BioResources 11(1), 573–584 (2016). https://doi.org/10.15376/biores.11.1.573-584

    Article  Google Scholar 

  4. Konieczny, J., Meyer, G.: Computer rendering and visual detection of orange peel. J. Coat. Technol. Res. 9(3), 297–307 (2012). https://doi.org/10.1007/s11998-011-9378-2

    Article  Google Scholar 

  5. Armesto, L., Tornero, J., Herraez, A., Asensio, J.: Inspection system based on artificial vision for paint defects detection on cars bodies. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1–4, May 2011. https://doi.org/10.1109/ICRA.2011.5980570

  6. Allard, M., Jaecques, C., Kauffer, I.: Coating material which can be thermally cured and hardened by actinic radiation and use thereof. US Patent 6,949,591, 27 September 2005

    Google Scholar 

  7. Bucur, V.: Techniques for high resolution imaging of wood structure: a review. Meas. Sci. Technol. 14(12), R91 (2003). https://doi.org/10.1088/0957-0233/14/12/R01

    Article  Google Scholar 

  8. Longuetaud, F., Mothe, F., Kerautret, B., et al.: Automatic knot detection and measurements from X-ray CT images of wood: a review and validation of an improved algorithm on softwood samples. Comput. Electron. Agric. 85, 77–89 (2012). https://doi.org/10.1016/j.compag.2012.03.013

    Article  Google Scholar 

  9. Kruk, M., Świderski, B., Osowski, S., Kurek, J., et al.: Melanoma recognition using extended set of descriptors and classifiers. EURASIP J. Image Video Process. 2015(1) (2015). https://doi.org/10.1186/s13640-015-0099-9

  10. Kurek, J., Świderski, B., Dhahbi, S., Kruk, M., et al.: Chaos theory-based quantification of ROIs for mammogram classification. In: Tavares, J.M.R.S., Natal, J.R.M. (eds.) Computational Vision and Medical Image Processing V. Proceedings of 5th ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing VipIMAGE 2015, pp. 187–191. CRC Press, Tenerife, 19–21 October 2015. https://doi.org/10.1201/b19241-32

    Chapter  Google Scholar 

  11. Świderski, B., Osowski, S., Kurek, J., Kruk, M., et al.: Novel methods of image description and ensemble of classifiers in application to mammogram analysis. Expert Syst. Appl. 81, 67–78 (2017). https://doi.org/10.1016/j.eswa.2017.03.031

    Article  Google Scholar 

  12. Kruk, M., Świderski, B., Śmietańska, K., Kurek, J., Chmielewski, L.J., Górski, J., Orłowski, A.: Detection of ‘orange skin’ type surface defects in furniture elements with the use of textural features. In: Saeed, K., Homenda, W., Chaki, R. (eds.) CISIM 2017. LNCS, vol. 10244, pp. 402–411. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59105-6_34

    Chapter  Google Scholar 

  13. Pohjalainen, J., Räsänen, O., Kadioglu, S.: Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 29(1), 145–171 (2015). https://doi.org/10.1016/j.csl.2013.11.004

    Article  Google Scholar 

  14. Chmielewski, L.J., Orłowski, A., Śmietańska, K., Górski, J., Krajewski, K., Janowicz, M., Wilkowski, J., Kietlińska, K.: Detection of surface defects of type ‘orange skin’ in furniture elements with conventional image processing methods. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2015. LNCS, vol. 9555, pp. 26–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30285-0_3

    Chapter  Google Scholar 

  15. Świderski, B., Osowski, S., Kruk, M., Kurek, J.: Texture characterization based on the Kolmogorov-Smirnov distance. Expert Syst. Appl. 42(1), 503–509 (2015). https://doi.org/10.1016/j.eswa.2014.08.021

    Article  Google Scholar 

  16. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  17. Pohjalainen, J.: Feature selection code (2015). http://users.spa.aalto.fi/jpohjala/featureselection/. Accessed 25 Apr 2017

  18. Liu, H., Setiono, R.: Chi2: feature selection and discretization of numeric attributes. In: Vassilopoulos, J. (ed.) Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, pp. 388–391. IEEE Computer Society, Herndon, 5–8 November 1995. https://doi.org/10.1109/TAI.1995.479783

  19. Hall, M.A., Smith, L.A.: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. In: Proceedings of 12th International Florida AI Research Society Conference FLAIRS 1999, AAAI, 1–5 May 1999

    Google Scholar 

  20. Liu, H., Yu, L.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of 20th International Conference on Machine Leaning ICML2003, pp. 856–863. ICM, Washington, D.C. (2003)

    Google Scholar 

  21. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: an enabling technique. Data Min. Knowl. Disc. 6(4), 393–423 (2002). https://doi.org/10.1023/A:1016304305535

    Article  MathSciNet  Google Scholar 

  22. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  23. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  Google Scholar 

  24. Cawley, G.C., Talbot, N.L.C.: Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics 22(19), 2348–2355 (2006). https://doi.org/10.1093/bioinformatics/btl386

    Article  Google Scholar 

  25. Wei, L.J.: Asymptotic conservativeness and efficiency of Kruskal-Wallis test for K dependent samples. J. Am. Stat. Assoc. 76(376), 1006–1009 (1981). https://doi.org/10.1080/01621459.1981.10477756

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bartosz Świderski or Arkadiusz Orłowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Świderski, B. et al. (2018). Feature Selection for ‘Orange Skin’ Type Surface Defect in Furniture Elements. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics