Skip to main content

Current Status of Natural Resources—An Overview

  • Chapter
  • First Online:
Raw Materials for Future Energy Supply

Abstract

Two scenarios must be distinguished in an assessment of the supply of natural resources : the supply from domestic sources and the supply from foreign sources .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Umicore can meet a significant proportion of the demands for gold (for example for jewelry alloys and galvanic baths) , for silver (for example for contact materials), and for platinum metals (for catalysts) from the recycling of electronic fractions, catalysts and industrial waste . Additionally, the company uses in-house recycled germanium for opto-electronic products or secondary cobalt for carbide and battery materials.

  2. 2.

    Deminex was a company founded by the German oil companies, for which the Federal Government provided 2.375 billion German Marks of federal funds between 1969 and 1989 as loans and subsidies for the securing and improving the supply of oil for the Federal Republic of Germany [7].

  3. 3.

    For example, Le Parisien 21.02.2014 [74]; FAZ 21 February 2014 [75]; Die Welt 21 February 2014: In February 2014 Minister for Industry Arnaud Montebourg announced the formation, in cooperation with private industry, for a state-directed mining company Compagnie Nationale des Mines de France . Latter initiative was, however, cancelled by the French government in 2016—without the company having been founded. https://www.challenges.fr/energie-et-environnement/macron-enterre-la-compagnie-des-mines-de-france-chere-a-montebourg_40701.

  4. 4.

    Under the direction of Metallgesellschaft AG in 1978, the Degussa AG , Siemens AG and Kabel- und Metallwerke Gutehoffnungshütte AG (each with a 25% share) combined into the Kupferexplorationsgesellschaft mbH.

  5. 5.

    See Anger [8]: there were three German Urangesellschaften: Urangesellschaft mbH (Metallgesellschaft AG , VEBA and STEAG) , Uranerzbergbau-GmbH (at that time RWE -daughter Rheinbraun , and C. Deilmann AG ) as well as Saarberg Interplan Uran GmbH (Saarbergwerke AG , Badenwerk AG and Energieversorgung Schwaben AG ).

  6. 6.

    Schodde [12]; lead times are for copper deposits.

  7. 7.

    The term “hedging ” describes a financial transaction to secure a contract against risks such as exchange rate fluctuations or changes in the commodity prices. The company that wishes to hedge a transaction makes an additional offsetting deal that is back-coupled with the original transaction . This is normally in the form of a forward transaction .

  8. 8.

    This does to apply to special coals, such as that required for the production of coking coal .

  9. 9.

    BGR [14]: The proportion of crude oil imports to Germany from Russia in 2013 was close to 35%, followed by Norway with just over 12% and the United Kingdom with just over 10%. Nigeria , Kazakhstan , Libya , Azerbaijan , Algeria , Saudi-Arabia and Egypt all contribute between one and eight percent each. These countries together supply over 91% of the German imports.

  10. 10.

    This is the case for today’s power stations that are designed for permanent operation. Experts consider that coal power stations can be designed to be much more flexible in the future, for example by reducing the minimum load [27].

  11. 11.

    In February 2014 leakage occurred from a 1000-m-deep storage facility system in a salt cavern . After this leak was assessed and limited operation of the storage reservoir was restarted, stored oil was discharged on the surface that resulted in significant environmental impacts.

  12. 12.

    Leopoldina [2]: based on the English version of the statement “Bioenergy —Chances and Limits” that was published in 2012 [29].

  13. 13.

    Leopoldina [2, p. 27]: “N2O and CH4 have a much stronger greenhouse effect as compared to CO2 . The potential of CH4 is about 25-times and that of N2O is about 300-times higher than that of CO2, relative to a baseline one hundred years ago.”

  14. 14.

    One Exajoule is one trillion or 1018 J.

  15. 15.

    This is equivalent to 1.5 billion tonnes of carbon per year.

  16. 16.

    See also Leopoldina [2, p. 16].

  17. 17.

    The harvest index is derived from the percentage proportion of the total net primary production (on the surface and subsurface ) that is sustainably harvestable as wood . With respect to the definition of a harvest index for wood it must be taken into consideration that most of the NPP in these long-lived flora is used for the continuous regrowth of leaves and roots. This NPP cannot be harvested as wood , which reduces the harvest index for trees.

  18. 18.

    About 55% of the harvested timber was used for meeting the primary energy consumption .

  19. 19.

    Fritz et al. [47]; Recommendations of the BÖR [48]; IPCC [49, Chap. 2]: Leopoldina [2, p. 16].

  20. 20.

    Peplow [51].

  21. 21.

    Eutroph means rich in nutrients. In this context it refers to an anthropogenic over-fertilization of water that can result in a disproportional growth of vegetation and therefore extensive imbalances in their environment (lack of oxygen , drying up of land , fauna extinction, excessive growth of specific plant species, etc.).

  22. 22.

    “Acquired” describes the difference between the NPP of the potential vegetation , which is vegetation that would grow in a specific area under the prevailing local conditions such as soil and today’s climate but without the presence of humans, and the proportion of the NPP of the currently dominant vegetation that remains in the eco-system after harvesting for mankind (see Leopoldina [2, pp. 116–132]).

  23. 23.

    The carbon that is subject to the carbon cycle is balanced in this way. Carbon that is contained in rocks, such as limestones, is not taken into account.

  24. 24.

    Nitrogen generally occurs as molecular N2.

  25. 25.

    Calculated in the compound P2O5.

  26. 26.

    Data for potassium monoxide (K2O) as a reference for the potassium content.

References

(Note: All Web links listed were active as of the access date but may no longer be available.)

  1. Bringezu, S./Schütz, H./Arnold, K./Merten, F./Kabasci, S./Borelbach, P./Michels, C./Reinhardt, G. A./Rettenmaier, N.: “Global Implications of Biomass and Biofuel Use in Germany – Recent Trends and future Scenarios for domestic and foreign agricultural Land Use and resulting GHG Emissions”. In: Journal Cleaner Production, 17, Elsevier Ltd., 2009, pp. 57–68.

    Google Scholar 

  2. Nationale Akademie der Wissenschaften Leopoldina: Bioenergie – Möglichkeiten und Grenzen (Stellungnahme der Leopoldina), Halle (Saale) 2013. URL: http://www.leopoldina.org/uploads/tx_leopublication/2013_06_Stellungnahme_Bioenergie_DE.pdf [accessed: 01.11.2014].

  3. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit/Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (Hrsg.): Nationaler Biomasseaktionsplan für Deutschland – Beitrag der Biomasse für eine nachhaltige Energieversorgung, Berlin 2010.

    Google Scholar 

  4. Vidal, O./Goffé, B./Arndt, N.: “Metals for a low-carbon Society” (Supplementary Information). In: Nature Geoscience, 6, 2013, pp. 894–896.

    Google Scholar 

  5. Hertwich, E.G./Gibojn, T./ Bouman, E. A./Arvesen, A./Suh, S./Heath, G. A./Bergesen, J. D./Ramirez, A./Vega, M. I./Shi, L.: “Integrated life-cycle Assessment of Electricity-Supply Scenarios confirms global environmental Benefit of low-carbon Technologies”. In: Proceedings of the National Academy of Sciences of the USA, 2014. URL: http://www.pnas.org/content/suppl/2014/10/02/1312753111.DCSupplemental [accessed: 28.10.2014].

  6. Scholz, R./Wellmer, F.-W.: “Approaching a dynamic View on the Availability of Mineral Resources: What we may learn from the Case of Phosphorus?”. In: Global Environmental Change 23: 1, 2013, pp. 11–27.

    Google Scholar 

  7. Hiller, K.: “Explorations-Förderprogramm DEMINEX (1969–1989)”. In: Geologisches Jahrbuch Reihe A, Heft 127, 1991, p. 289–298.

    Google Scholar 

  8. Anger, G.: “Deutscher Auslandsbergbau unternehmerische Aktivitäten und verbandliche Gemeinschaftsaufgaben”. In: Jahrbuch Bergbau, Öl und Gas, Elektrizität, Chemie, 1990/91, pp. 1–26.

    Google Scholar 

  9. Wellmer, F.-W.: “The Concept of Lead Time”. In: Minerals Industry International, 1005, 1992, pp. 39–40.

    Google Scholar 

  10. Kingsnorth, D. J.: The global Rare Earths Industry: the Supply Chain Challenges (Company paper IMCOA [Industrial Minerals Company of Australia Pty. Ltd.]), 2012.

    Google Scholar 

  11. Schodde, R. C.: “Recent Trends in Copper Exploration — are we finding enough?”. In: International Geological Congress IGC Brisbane, Australien, 05. − 10. August 2012), 2012. URL: http://www.minexconsulting.com/publications/IGC%20Presentation%20Aug%202012%20PUBLIC.pdf [accessed: 15.01.2015].

  12. Schodde, R.C.: “Global Outlook and Development Trends for Copper”. In: Philippines Mining Conference, Manila, 20.09.2012. URL: http://www.minexconsulting.com/publications/Copper%20Outlook%20-%20PMC%20presentation%20Sept%202012.pdf [accessed: 13.03.2014].

  13. Matthews, L.: Speaking Notes for Lloyd Matthews, Minister of Mines and Energy. Update on the Voisey’s Bay Negotiations to St. John’s Board of Trade, 11. October 2001. URL: http://www.releases.gov.nl.ca/releases/speeches/2001/outlook2001/BoardOfTradeOct2001.htm [accessed: 12.08.2014].

  14. Bundesanstalt für Geowissenschaften und Rohstoffe: Energiestudie 2014: Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen (18), Hannover 2014.

    Google Scholar 

  15. International Energy Agency: World Energy Outlook 2014, Paris: IEA 2013. URL: http://www.worldenergyoutlook.org/publications/weo-2013/ [accessed: 17.11.2014].

  16. Organization of the Petroleum Exporting Countries: World Oil Outlook 2014, Wien 2014. URL: http://www.opec.org/opec_web/static_files_project/media/downloads/publications/WOO_2014.pdf [accessed: 17.11.2014].

  17. British Petroleum: Statistical Review of World Energy, London 2015. URL: http://www.bp.com/content/dam/bp/pdf/Energy-economics/statistical-review-2015/bp-statistical-review-of-world-energy-2015-full-report.pdf [accessed: 28.08.2015].

  18. Arbeitsgemeinschaft Energiebilanzen e.V.: Energieverbrauch in Deutschland im Jahr 2014, Berlin 2015. URL: http://www.ag-energiebilanzen.de/ [accessed: 23.03.2015].

  19. US Environmental Protection Agency: EPA’s Study of Hydraulic Fracturing for Oil and Gas and its Potential Impact on Drinking Water Resources, 2015. URL: http://www2.epa.gov/hfstudy [accessed: 20.02.2015].

  20. Bundesanstalt für Geowissenschaften und Rohstoffe: Abschätzung des Erdgaspotenzials aus dichten Tongesteinen (Schiefergas) in Deutschland, Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe 2012.

    Google Scholar 

  21. Bundesanstalt für Geowissenschaften und Rohstoffe: Schieferöl und Schiefergas in Deutschland – Potenziale und Umweltaspekte, Hannover 2016.

    Google Scholar 

  22. Ewen, C./Borchardt, D./Richter, S./Hammerbacher, R.: Risikostudie Fracking – Sicherheit und Umweltverträglichkeit der Fracking-Technologie für die Erdgasgewinnung aus unkonventionellen Quellen (Summary Report), Darmstadt 2012.

    Google Scholar 

  23. Meiners, H.G./Denneborg, M./Müller, F./Bergmann, A./Weber, F.-A./Dopp, E./Hansen, C./Schüth, C./Buchholz, G./Gaßner, H./Sass, I./Homuth, S./Priebs, R.: Umweltauswirkungen von Fracking bei der Aufsuchung und Gewinnung von Erdgas aus unkonvetionellen Lagerstätten – Risikobewertung, Handlungsempfehlungen und Evaluierung bestehender rechtlicher Regelungen und Verwaltungsstrukturen (Study for the Umweltbundsamt), Aachen, Mühlheim a. d. Ruhr, Berlin, Darmstadt: ahu AG Wasser Boden Geomatik/IWW Rheinisch-Westfälisches Institut für Wasser – Beratungs- und Entwicklungsgesellschaft mbH/Gaßner, Groth, Siederer & Coll. Rechtsanwälte Partnerschaftsgesellschaft/Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Fachgebiet Angewandte Geothermie 2012.

    Google Scholar 

  24. Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen: Fracking in unkonventionellen Erdgas-Lagerstätten in NRW, Summary report about the expert opinion: „Gutachten mit Risikostudie zur Exploration und Gewinnung von Erdgas aus unkonventionellen Lagerstätten in Nordrhein-Westfalen (NRW) und deren Auswirkungen auf den Naturhaushalt, insbesondere die öffentliche Trinkwasserversorgung“, Düsseldorf 2012.

    Google Scholar 

  25. Deutsche Akademie der Technikwissenschaften (acatech): Hydraulic Fracturing – Eine Technologie in der Diskussion (acatech Position), 2015. URL: http://www.acatech.de/de/projekte/laufende-projekte/hydraulic-fracturing-eine-technologie-in-der-diskussion.html [accessed: 01.10.2015].

  26. Bundesanstalt für Geowissenschaften und Rohstoffe: Deutschland – Rohstoffsituation 2013, Hannover 2014.

    Google Scholar 

  27. Görner, K./Sauer D. U.: Konventionelle Kraftwerke. Technologiesteckbrief zur Analyse “Flexibilitätskonzepte für die Stromversorgung 2050”, München 2016.

    Google Scholar 

  28. Elsner, P./Fischedick, M./Sauer, D. U. (Hrsg.): Flexibilitätskonzepte für die Stromversorgung 2050: Technologien – Szenarien – Systemzusammenhänge (Schriftenreihe Energiesysteme der Zukunft), München 2015.

    Google Scholar 

  29. Nationale Akademie der Wissenschaften Leopoldina: Bioenergy – Chances and Limits (Stellungnahme der Leopoldina), Halle (Saale) 2012. URL: http://www.leopoldina.org/uploads/tx_leopublication/201207_Stellungnahme_Bioenergie_LAY_en_final_01.pdf [accessed: 18.02.2015].

  30. Umweltbundesamt: Emissionen aus der Landwirtschaft im Jahr 2010, Dessau-Roßlau 2014. URL: http://www.umweltbundesamt.de/daten/land-forstwirtschaft/landwirtschaft/beitrag-der-landwirtschaft-zu-den-treibhausgas [accessed: 28.10.2014].

  31. European Academies Science Advisory Council: Policy Report 19 – The current Status of Biofuels in the European Union, their environmental Impacts and future Prospects, 2012. URL: http://www.easac.eu/home/reports-and-statements.html [accessed: 28.10.2014].

  32. Seppelt, R./Mahceur, A. M./Liu, J./Fehichel, E. P./Klotz, S.: “Synchronized peak-rate Years of global Resources Use”. In: Ecology and Society, 19: 4, 2014, Article 50.

    Google Scholar 

  33. Bundesministerium für Ernährung und Landwirtschaft: Statistischer Monatsbericht 03/2015 – Daten und Tabellen, Berlin 2015. URL: http://www.bmelv-statistik.de/index.php?id=139&ab=66 [accessed: 10.04.2015].

  34. Haberl, H./Erb, K.H./Krausmann, F./Running, S./Searchinger, T.D./Smith, W.K.: “Bioenergy, how much can we expect for 2050?”. In: Environmental Research Letters, 8, Article- Nr. 031004, 2013.

    Google Scholar 

  35. Randers, J.: 2052A global Forecast for the next forty Years, A Report to the Club of Rome commemorating the 40th Anniversary of the “The Limits to Gowth”, White River Junction, Vermont: Chelsea Green Publishing 2012.

    Google Scholar 

  36. International Renewable Energy Agency: Global Bioenergy – Supply and Demand Projections, a Working Paper for REmap 2030, Abu Dhabi, Bonn: IRENA 2014.

    Google Scholar 

  37. US Department of Energy: US Billion-Ton Update: Biomass Supply for Bioenergy and Bioproducts Industry, Energy Efficiency and Renewable Energy Office of the Biomass Program 2011. URL: http://bioenergykdf.net / http://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf [accessed: 28.10.2014].

  38. Zika, M./Erb, K. H.: “The global loss of net primary production resulting from human-induced soil degradation in dry lands”. In: Ecological Economics, 69, 2009, pp. 3010–3018.

    Google Scholar 

  39. Zhao, M./Running, S. D. W.: “Drought-induced reduction in global terrestrial net primary production from 2000 through 2009”. In: Science, 329, 2010, pp. 940–943.

    Google Scholar 

  40. Krausmann, F./Erb, K.-H./Gingrich, S./Hbaerl, H./Bondeau, A./Gaube, V./Lauk, C./Plutzar, C./Searchinger, T. D.: “Global Human Approriation of net primary Production doubled in the 20th Century”. In: Proceedings of the National Academy of Sciences of the USA, 110, 2013, pp. 10324–10329.

    Google Scholar 

  41. Hejazi, M./Edmonds, J./Clarke, L./Kyle, P./Davies, E./Chaturvedi, V./Wise, M./Patel, P./Eom, J./Calvin, K./Moss, R./Kim, S.: “Long-term global Water Projections using six socioeconomic Scenarios in an integrated Assessment Modeling Framework”. In: Technological Forecasting and Social Change, 81, 2014, p. 205–226.

    Google Scholar 

  42. Bundesministerium für Ernährung und Landwirtschaft (Hrsg.): Der Wald in Deutschland – Ausgewählte Ergebnisse der dritten Bundeswaldinventur, Berlin 2014. URL: http://www.bmel.de/SharedDocs/Downloads/Broschueren/Bundeswaldinventur3.pdf?__blob=publicationFile [accessed: 13.03.2015].

  43. Schulze, E. D./Körner, C. I./Law, B. E./Haberl, H./Luyssaert, S.: “Large-scale Bioenergy from additional harvest of Forest Biomass is neither sustainable nor Greenhouse Gas neutral”. In: Global Change Biology Bioenergy, 4: 6, 2012, pp. 611–616.

    Google Scholar 

  44. Stephenson, N. L./Das, A. J./Condit, R./Russo, S. E./Baker, P. J./Beckman, N. G./Coomes, D. A./Lines, E. R./Morris, W. K./Rüger, N./Álvarez, E./Blundo, C./Bunyavejchewin, S./Chuyong, G./Davies, S. J./Duque, Á./Ewango, C. N./Flores, O./Franklin, J. F./Grau, H. R./Hao, Z./Harmon, M. E./Hubbell, S. P./Kenfack, D./Lin, Y./Makana, J.-R./Malizia, A./Malizia, L. R./Pabst, R. J./Pongpattananurak, N./Su, S.-H./Sun, I.-F./Tan, S./Thomas, D./van Mantgem, P. J./Wang, X./Wiser, S. K./Zavala, M. A.: “Rate of Tree Carbon Accumulation increases continuously with Tree Size”. In: Nature, 507, 2014, pp. 90–93.

    Google Scholar 

  45. Food and Agriculture Organization of the United Nations: Status of the World’s Forests 2014 – Enhancing the socioeconomic Benefits from Forests, Rom 2014. URL: http://www.fao.org/3/a-i3710e.pdf [accessed: 28.09.2015].

  46. Stichnothe, H./Schuchardt, F.: “Comparison of different Treatment Options for Palm Oil Production Waste on a Life Cycle Basis”. In: International Journal of Life Cycle Assessment, 15, 2010, pp. 907–915.

    Google Scholar 

  47. Fritz, S./See, L./van der Velde, M./Nalepa, R. A./Perger, C./Schill, C./McCallum, I./Schepaschenko, D./Kraxner, F./Cai, X./Zhang, X./Ortner, S./Hazarika, R./Cipriani, A./di Bella, C./Rabia, A. H./Garcia, A./Vakolyuk, M./Singha, K./Beget, M.E./Erasmi, S./Albrecht, F./Shaw, B./Obersteiner, M.: “Downgrading recent Estimates of Land available for Biofuel Production”. In: Environmental Science & Technology 47, 2013, p. 1688–1694.

    Google Scholar 

  48. BioÖkonomieRat: Empfehlungen 3Nachhaltige Nutzung von Bioenergie, Berlin: Forschungs- und Technologierat Bioökonomie 2012. URL: http://www.biooekonomierat.de/fileadmin/templates/publikationen/empfehlungen/BioOEkonmieRat-Empfehlungen-Bioenergie.pdf [accessed: 29.10.2014].

  49. Intergovernmental Panel on Climate Change: Renewable Energy Sources and Climate Change Mitigation (SRREN Special report of the IPCC, Working Group III “Mitigation of Climate Change”, Chapter 2 (Bioenergy), New York, NY: Cambridge Univ. Press 2011, pp. 214–331. URL: http://srren.ipcc-wg3.de/report [accessed: 28.10.2014].

  50. Eisler, M.C./Lee, M.R.F./Tarlton, J.F./Martin, G.B./Beddington, J./Dungait, J.A.J./Greathead, H./Liu, J./Mathew, S./Miller, H./Misselbrook, T./Murray, P./Vinod, V.K./van Saun, R./Winter, M.: “Steps to sustainable livestock”. In: Nature, 507, 2014, pp. 32–34.

    Google Scholar 

  51. Peplow, M.: “Cellulosic Ethanol Fights for Life”. In: Nature, 507, 2014, pp. 152–156.

    Google Scholar 

  52. Rockström, J./Steffen, W./Noone, K./Persson, Å./Chapin III, F.S./Lambin, E./Lenton, T.M./Scheffer, M./Folke, C./Schellnhuber, H. J./Nykvist, B./de Wit, C. A./Hughes, T./ van der Leeuw, S./Rodhe, H./Sörlin, S./Snyder, P. K./Costanza, R./Svedin, U./Falkenmark, M./Karlberg, L./Corell, R.W./Fabry, V.J./Hansen, J./Walker, B./Liverman, D./Richardson, K./Crutzen, P./Foley, J.: “Planetary Boundaries: Exploring the safe operating Space for Humanity”. In: Ecology and Society, 14(2): 32, 2009. URL: http://www.ecologyandsociety.org/vol14/iss2/art32/ [accessed: 28.10.2014].

  53. Steffen, W./Richardson, K./Rockström, J./Cornell, S.E./Fetzer, I./Bennett, E.M./Biggs, R./Carpenter, S.R./de Vries, W./de Wit, C.A./Gerten, D./Heinke, J./Mace, G.M./Persson, L.M./Ramanathan, V./Reyers, B./Sörlin, S.: “Planetary Boundaries: Guiding human Development on a changing Planet”. In: Science, 347: 6223, 2015.

    Google Scholar 

  54. Wegener, J./Theuvsen, L.: Handlungsempfehlungen zur Minderung von stickstoffbedingten Treibhausgasemissionen in der Landwirtschaft, Berlin: WWF Deutschland 2010. URL: http://www.uni-goettingen.de/de/document/download/9fd9831506d1021458b96370775b432e.pdf/100720_Stickstoffbroschuere.pdf [accessed: 05.11.2014].

  55. Banwart, S.: “Save our Soils”. In: Nature, 474, 2011, pp. 151–152.

    Google Scholar 

  56. Bundesministerium für Ernährung und Landwirtschaft (Hrsg.): Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten 2013, Münster: Landwirtschaftsverlag GmbH 2013. URL: www.bmelv-statistik.de; http://www.bmelv-statistik.de/fileadmin/sites/010_Jahrbuch/Stat_Jahrbuch_2013.pdf [accessed: 27.01.2015].

  57. Food and Agriculture Organization of the United Nation: Current world Fertilizer Trends and Outlook 2016, Rom 2012. ftp://ftp.fao.org/ag/agp/docs/cwfto16.pdf [accessed: 28.10.2014].

  58. US Geological Survey: Mineral Commodity Summaries 2015, Washington DC 2014. URL: http://minerals.usgs.gov/minerals/pubs/mcs/2015/mcs2015.pdf [accessed: 07.08.201].

  59. Organisation for Economic Co-operation and Development: Biofuel support Policies: An economic Assessment, 2008.

    Google Scholar 

  60. Bley, T. (Hrsg.): Biotechnologische Energieumwandlungen: Gegenwärtige Situation, Chancen und künftiger Forschungsbedarf (acatech Diskutiert), Berlin, Heidelberg: Springer Verlag 2009.

    Google Scholar 

  61. Wellmer, F.-W./Dalheimer, M.: “The Feedback Control Cycle as Regulator of past and future Mineral Supply”. In: Mineralium Deposita, 47: 7, 2012, pp. 713–729.

    Google Scholar 

  62. International Energy Agency: Key World Energy Statistics, Paris: IEA 2014.

    Google Scholar 

  63. Haberl, H./Erb, K.-H./Krausmann, F./Gaube, V./Bondeau, A./Plutzar, C./Gingrich, S./Lucht, W./Fischer-Kowalski, M.: “Quantifying and Mapping the global human Appropriation of net primary Production in Earth’s terrestrial Ecosystem”. In: Proceedings of the National Academy of Sciences of the USA, 104: 31, 2007, p. 12942–12947. URL: http://www.pnas.org/content/suppl/2007/07/09/0704243104.DC1 [accessed: 12.02.2015].

  64. Barthel, F./Busch, K./Könnecker, K./Thoste, V./Wagner, H.: “Zwanzig Jahre Explorationsförderung für mineralische Rohstoffe”. In: Geologisches Jahrbuch Series A, Volume 127, 1991, pp. 271–288.

    Google Scholar 

  65. Keitel, H.-P.: Rohstoffsicherheit für Deutschland und Europa. In: Key note speech 3. BDI-Raw Materials Congress, Berlin, 26.10.2010.

    Google Scholar 

  66. Wedig, M.: “Die Entwicklung des Auslandsbergbaus am Beispiel von FAB-Strategien”. In: Bergbau, 1, 2014, pp. 4–9.

    Google Scholar 

  67. Bundesministerium für Bildung und Forschung: Forschung für nachhaltige Entwicklungen (FONA)Rahmenprogramm des BMBF, Bonn, Berlin: BMBF 2009, p. 59. URL: http://www.fona.de/mediathek/pdf/forschung_nachhaltige_entwicklungen_neu.pdf [accessed: 29.10.2014].

  68. Bundesministerium für Bildung und Forschung: Ressourceneffizienz potenzieren. Broschüre zum Förderschwerpunkt “Innovative Technologien für Ressourceneffizienz – rohstoffintensive Produktionsprozesse” (r2), Karlsruhe: Fraunhofer-Institut für System- und Innovationsforschung ISI 2010. URL: http://www.r-zwei-innovation.de/_media/r2_broschuere_web.pdf [accessed: 29.10.2014].

  69. Bundesministerium für Bildung und Forschung: r3 – Strategische Metalle und Mineralien − Innovative Technologien für Ressourceneffizienz, Bonn: BMBF 2013. URL: http://www.fona.de/mediathek/r3/pdf/131126_r3_Broschuere_barrierefrei.pdf [Stand: 29.10.2014].

  70. Bundesministerium für Bildung und Forschung: Wirtschaftsstrategische Rohstoffe für den Hightech-Standort Deutschland (r4), Bonn: BMBF 2012.

    Google Scholar 

  71. Bundesministerium für Wirtschaft und Energie: Rohstoffstrategie der Bundesregierung – Sicherung einer nachhaltigen Rohstoffversorgung Deutschlands mit nicht-energetischen mineralischen Rohstoffen, Berlin: BMWi 2010.

    Google Scholar 

  72. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Deutsches Ressourceneffizienzprogramm (ProgRess)Programm zur nachhaltigen Nutzung und zum Schutz der natürlichen Ressourcen, Berlin: BMUB 2012. URL: http://www.bmub.bund.de/fileadmin/Daten_BMU/Pools/Broschueren/progress_dt_bf.pdf [accessed: 29.10.2014].

  73. Bundesministerium für Wirtschaft und Energie: Bekanntmachung im Rahmen der Rohstoffstrategie der Bundesregierung: Richtlinien über die Gewährung von bedingt rückzahlbaren Zuwendungen zur Verbesserung der Versorgung der Bundesrepublik Deutschland mit kritischen Rohstoffen (Explorationsförderrichtlinien), Berlin: BMWi 2012.

    Google Scholar 

  74. Le Parisien: “Arnaud Montebourg: La renaissance d'une compagnie nationale des mines,” 2014. URL: http://www.leparisien.fr/economie/arnaud-montebourg-la-renaissance-d-une-compagnie-nationale-des-mines-21-02-2014-3611305.php [accessed: 01.10.2015].

  75. Frankfurter Allgemeine Zeitung: Frankreich gründet einen Staatsbergbaukonzern, 21.02.2014. URL: http://www.faz.net/aktuell/wirtschaft/wirtschaftspolitik/industrie-politik-frankreich-gruendet-einen-staatsbergbaukonzern-12814521.html [accessed: 01.10.2015].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich-W. Wellmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wellmer, FW. et al. (2019). Current Status of Natural Resources—An Overview. In: Raw Materials for Future Energy Supply. Springer, Cham. https://doi.org/10.1007/978-3-319-91229-5_4

Download citation

Publish with us

Policies and ethics