A Mixed Hybrid Conjugate Gradient Method for Unconstrained Engineering Optimization Problems

  • David A. Oladepo
  • Olawale J. Adeleke
  • Churchill T. Ako
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 765)


A new hybrid of the conjugate gradient (CG) method that combines the features of five different CG methods is proposed. The corresponding CG algorithm generated descent directions independent of line search procedures. With the standard Wolfe line search conditions, the algorithm was shown to be globally convergent. Based on numerical experiments with selected large-scale benchmark test functions and comparison with classical methods, the method is very promising and competitive.


Unconstrained optimization problems Hybrid nonlinear conjugate gradient method Descent direction Global convergence Standard Wolfe line search conditions Numerical experiment 



The support of the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the CoE. The authors also wish to appreciate Covenant University Centre for Research, Innovation and Discovery (CUCRID) for funding the publication of this research output.


  1. 1.
    Al-Baali, A.: Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J. Numer. Anal. 5, 121–124 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrei, N.: An unconstrained optimization test functions collection. Adv. Mod. Optim. 10(1), 147–161 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hestenes, M.R., Stiefel, E.L.: Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jian, J., Han, L., Jiang, X.: A hybrid conjugate gradient method with descent property for unconstrained optimization. Appl. Math. Model. 39, 1281–1290 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jiang, X.Z., Han, L., Jian, J.B.: A globally convergent mixed conjugate gradient method with Wolfe line search. Math. Numer. Sin. 34, 103–112 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Li, X., Zhao, X.: A hybrid conjugate gradient method for optimization problems. Natural Sci. 3(1), 85–90 (2011)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, Part 1: theory. J. Optim. Theory Appl. 69, 129–137 (1991)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Polak, E., Ribiére, E.: Note sur la convergence de directions conjugeés, Rev. Francaise Informat Recherche Operationelle, 3e Année, 16, pp. 35–43 (1969)Google Scholar
  11. 11.
    Polyak, B.T.: The conjugate gradient method in extreme problems. USSR Comp. Math. Math. Phys. 9, 94–112 (1969)CrossRefGoogle Scholar
  12. 12.
    Wei, Z., Yao, S., Liu, L.: The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. 183, 1341–1350 (2006). Scholar
  13. 13.
    Yao, S.W., Wei, Z.X., Huang, H.: Note bout WYL’s conjugate gradient method and its application. Appl. Math. Comput. 191, 381–388 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zoutendijk, G.: Nonlinear programming, Computational methods. In: Abadie, J. (ed.) Integer and Nonlinear Programming, pp. 37–86. North-Holland, Amsterdam (1970)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • David A. Oladepo
    • 1
  • Olawale J. Adeleke
    • 2
    • 3
  • Churchill T. Ako
    • 1
  1. 1.Department of Petroleum Engineering, College of EngineeringCovenant UniversityOtaNigeria
  2. 2.Department of Mathematics, College of Science and TechnologyCovenant UniversityOtaNigeria
  3. 3.DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS)JohannesburgSouth Africa

Personalised recommendations