New Numerical Investigation Using Meshless Methods Applied to the Linear Free Surface Water Waves

  • Mohamed Loukili
  • Soumia Mordane
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 765)


A new investigation using meshfree methods to resolve the linear free surface water waves problem. Two methods are used in this current investigation, the method of fundamental solutions (MFS) and multiquadric (MQ) radial basis function. The problem is solved by collocation of boundary points since the governing equations are satisfied automatically in order to provide information on fast and accurate method for an efficient hydrodynamic prediction.


Meshless method Free surface Gravity waves Radial basis functions MQ MFS Hydrodynamic prediction 


  1. 1.
    Li, J., Cheng, H.-D., Ching, C.-S.: A comparison of efficiency and error convergence of multiquadric collocation method and finite element method. Eng. Anal. Bound. Elem. 27, 251–257 (2003)CrossRefGoogle Scholar
  2. 2.
    Atluri, S.N.: The Meshless Method (MLPG) for Domain & BIE Discretizations. Tech Science Press, Forsyth (2004)zbMATHGoogle Scholar
  3. 3.
    Atluri, S.N., Shen, S.: The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press, Encino (2002)zbMATHGoogle Scholar
  4. 4.
    Chen, Y., Lee, J., Eskandarian, A.: Meshless Methods in Solid Mechanics. Springer, New York (2006)zbMATHGoogle Scholar
  5. 5.
    Ferreira, A., Kansa, E.J., Fasshauer, G.E., Leito, V.: Progress on Meshless Methods. Springer, Dordrecht (2008)Google Scholar
  6. 6.
    Griebel, M., Schweitzer, M.: Meshfree Methods for Partial Differential Equations. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  7. 7.
    Xiao, L.F., Yang, J.M., Peng, T., Li, J.: A meshless numerical wave tank for simulation of nonlinear irregular waves in shallow water. Int. J. Numer. Methods Fluids 61, 165–184 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Loukili, M., Mordane, S.: Modélisation de l’interaction houle-marche rectangulaire par la méthode des solutions fondamentales. In: 13ème Congrès de Mécanique Meknès, Maroc (2017)Google Scholar
  9. 9.
    Xiao, L.F., Yang, J.M., Peng, T., Tao, T.: A free surface interpolation approach for rapid simulation of short waves in meshless numerical wave tank based on the radial basis function. J. Comput. Phys. 307, 203–224 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Senturk, U.: Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method. Comput. Fluids 44, 221–228 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Orlansky, I.: A simple boundary condition for unbonded hyperbolic flows. J. Comput. Phys. 21(3), 251–269 (1976). Scholar
  12. 12.
    Huang, C.S., Lee, C.-F., Cheng, A.H.D.: Error estimate optimal shape factor, and high precision computation of multiquadric collocation method. Eng. Anal. Bound. Elem. 31, 614–623 (2007)CrossRefGoogle Scholar
  13. 13.
    Franke, R.: Scattered data interpolation: tests of some method. Math. Comput. 38, 181–200 (1982)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Mordane, S.: Contribution numérique à la résolution du problème d’interaction houle-obstacles. Thèse de Doctorat d’Etat, Université Hassan II - Mohammedia, Casablanca, Maroc (2001)Google Scholar
  15. 15.
    Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Polymer Physics and Critical Phenomena Laboratory, Faculty of Sciences Ben M’sikUniversity Hassan IICasablancaMorocco

Personalised recommendations