The Technique of Informational Interaction Structural-Parametric Optimization of an Earth’s Remote Sensing Small Spacecraft Cluster

  • Jury S. Manuilov
  • Alexander N. Pavlov
  • Dmitry A. Pavlov
  • Alexey A. Slin’ko
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 765)

Abstract

Promising orbital remote sensing of the Earth are created in the form of clusters of small spacecraft. One of the central problems of creating small satellites clusters is the development of management systems of their information interaction. The lack of effective control technologies multi-satellite group, transmission, and processing of distributed information huge volumes can negate the impact of the latest achievements in the construction of future space systems usedness. Management system of small spacecraft clusters information interaction should be oriented mostly on maintaining a separate spacecraft and control its production cycle, and to assess the status of the entire cluster and making decisions on its reconfiguration and use for the intended purpose in conditions of limited resources (information, energy, etc.) of the cluster. The solution to such a complex question fraught with difficulties, caused by the imperfection of the existing scientific and methodological apparatus management information by the interaction of complex objects (systems network architecture) [1, 2, 3, 4]. The authors proposed a technique based on the developed models [5], which allows to optimize structure and parameters of the Earth’s remote sensing small spacecraft cluster information interaction system. The article shows that the application of the developed technique enhances the performance of the small spacecraft cluster application.

Keywords

Remote sensing of the earth A cluster of small spacecraft Information interaction Structural-parametric optimization 

Notes

Acknowledgements

The research described in this paper is partially supported by the Russian Foundation for Basic Research (grants 16-07-00779, 16-08-00510, 16-08-01277, 16-29-09482-ofi-i, 17-08-00797, 17-06-00108, 17-01-00139, 17-29-07073-ofi-i, 18-08-01505, 18-07-01272), grant 074-U01 (ITMO University), project 6.1.1 (Peter the Great St. Petersburg Politechnic University) supported by Government of Russian Federation, Program STC of Union State “Technology-SG” (project 1.3.3.3.1), state order of the Ministry of Education and Science of the Russian Federation 2.3135.2017/4.6, state research 0073–2014–0009, 0073–2015–0007, International project ERASMUS +, Capacity building in higher education, 73751-EPP-1-2016-1-DE-EPPKA2-CBHE-JP, International project KS1309 InnoForestView Innovative information technologies for analyses of negative impact on the cross-border region forests.

References

  1. 1.
    Pavlov, D.A.: Metodika planirovanija operacij informacionnogo vzaimodejstvija klastera malyh kosmicheskih apparatov distancionnogo zondirovanija Zemli (The technique of operations scheduling communications between a cluster of small spacecraft remote sensing of the Earth). Trudy Voenno-kosmicheskoj akademii imeni A.F. Mozhajskogo, vol. 649, pp. 37–47 (2014). (In Russian)Google Scholar
  2. 2.
    Gorodetsky, V.I., Karsaev, O.V.: Samoorganizaciya gruppovogo povedeniya klastera malyh sputnikov raspredelennoj sistemy nablyudeniya (Distributed surveillance system based on self-organized collective behavior of small satellite cluster). Izvestiya SFedU. Engineering Sciences. vol. 2(187), pp. 234–247 (2017). (In Russian)Google Scholar
  3. 3.
    Sollogub, A.V., Skobelev, P.O., Simonova, E.V., Carev, A.V., Stepanov, M.E, Zhiljaev, A.A.: Intellektual’naja sistema raspredelennogo upravlenija gruppovymi operacijami klastera malorazmernyh kosmicheskih apparatov v zadachah distancionnogo zondirovanija Zemli (Intelligent system distributed control of group operations of a cluster of small spacecraft in problems of remote sensing of the Earth). Informacionno-upravljajushhie sistemy. vol. 1, pp. 16–26 (2013). (In Russian)Google Scholar
  4. 4.
    Potrjasaev, S., Okhtilev, P., Ipatov, Y., Sokolov, B.: Methodology and structure adaptation algorithm for complex technical objects reconfiguration models. In: Cybernetics and Mathematics Applications in Intelligent Systems Proceedings of the 6th Computer Science On-line Conference, vol. 574, pp. 319–328. Springer (2017)Google Scholar
  5. 5.
    Pavlov, A.N., Pavlov, D.A., Slin’ko, A.A.: Strukturno-parametricheskij sintez sistemy informacionnogo vzaimodejstviya klastera perspektivnyh malyh kosmicheskih apparatov distancionnogo zondirovaniya zemli i ocenka ee robastnosti (Structural-parametric synthesis of the system of information interaction of a cluster of perspective small satellites of remote sensing of the Earth and evaluation of its robustness). H&ES Research. vol. 9, № 5, pp. 6–18 (2017)Google Scholar
  6. 6.
    Hromov, A.V.: Sputnik distancionnogo zondirovaniya Zemli SkySat (Satellite remote sensing of the Earth SkySat) (2017). http://www.dauria.ru/blog/skysat
  7. 7.
    Potyupkin, A.U., Danilin, N.S., Selivanov, A.S.: Klastery malorazmernyh kosmicheskih apparatov kak novyj tip kosmicheskih ob”ektov (Clusters of small spacecraft as a new type of space objects) Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. vol. 4, № 4, pp. 45–56 (2017). (In Russian)Google Scholar
  8. 8.
    Slin’ko A.A., Pavlov A.N., Pavlov D.A. Pavlov A.A. Model’ planirovanija operacij ustojchivogo informacionnogo vzaimodejstvija klastera malyh kosmicheskih apparatov distancionnogo zondirovanija Zemli (The planning model of sustainable operations information interaction cluster of small spacecraft remote sensing of the Earth). Trudy Voenno-kosmicheskoj akademii im. A.F. Mozhajskogo. vol. 654, pp. 8–13 (2016). (In Russian)Google Scholar
  9. 9.
    Pavlov, D.A., Osipenko, S.A., Masalkin, A.A., Slin’ko, A.A.: Podhod k resheniju zadachi poiska intervalov postojanstva struktury klasterov malyh kosmicheskih apparatov. (The approach to solving the problem of finding intervals of constancy of the structure of clusters of small spacecraft) Sbornik trudov II Vserossijskoj NTK « Teoreticheskie i prikladnye problemy razvitija i sovershenstvovanija avtomatizirovannyh sistem upravlenija voennogo naznachenija » . SPb.: VKA imeni A.F.Mozhajskogo, pp. 194–195 (2015). (In Russian)Google Scholar
  10. 10.
    Moskvin, B.V.: Teoriya prinyatiya reshenij: Uchebnik (The theory of decision making: Textbook) SPb. VKA imeni A.F. Mozhajskogo. 383 p. (2005). (In Russian)Google Scholar
  11. 11.
    Ivanov, D.A., Sokolov, B.V., Pavlov, A.N.: Optimal distribution (re)planning in a centralized multi-stage supply network in the presence of the ripple effect. Eur. J. Oper. Res. 237(2), 758–770 (2014)CrossRefGoogle Scholar
  12. 12.
    Sokolov, B.V., Moskvin, B.V., Pavlov, A.N.: Voennaya sistemotekhnika i sistemnyj analiz. Modeli i metody prinyatiya reshenij v slozhnyh organizacionno–tekhnicheskih kompleksah v usloviyah neopredelyonnosti i mnogokriterial’nosti: Uchebnik. (Military systems engineering and systems analysis. Models and methods of decision-making in complex technical–organizational systems in conditions of uncertainty and multicriteria: Textbook) SPb. VIKKU imeni A. F. Mozhajskogo. 496 p. (1999). (In Russian)Google Scholar
  13. 13.
    Pavlov, A.N., Pavlov, A.A., Slinko, A.A., Pashenko, A.E.: Research of structural reliability and survivability of complex objects. In: Automation Control Theory Perspectives in Intelligent Systems » Proceedings of the 5th Computer Science In-Line Conference, vol. 3, pp. 463–473. Springer (2016)Google Scholar
  14. 14.
    Ivanov, D., Hartl, R., Dolgui, A., Pavlov, A., Sokolov, B.: Integration of aggregate distribution and dynamic transportation planning in a supply chain with capacity disruptions and the ripple effect consideration. Int. J. Prod. Res. 53(23), 6963–6979 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jury S. Manuilov
    • 2
  • Alexander N. Pavlov
    • 1
    • 2
  • Dmitry A. Pavlov
    • 2
  • Alexey A. Slin’ko
    • 2
  1. 1.Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO)St. PetersburgRussia
  2. 2.Mozhaisky Military AeroSpace AcademySt. PetersburgRussia

Personalised recommendations