MedGUIDE. http://www.aal-europe.eu/projects/medguide/
Ordonez, F.J., de Toledo, P., Sanchis, A.: Activity recognition using hybrid generative/discriminative models on home environments using binary sensors. Sensors 13(5), 5460–5477 (2013). https://doi.org/10.3390/s130505460
CrossRef
Google Scholar
Leutheuser, H., Schuldhaus, D., Eskofier, B.M.: Hierarchical, multi-sensor based classification of daily life activities: comparison with state-of-the-art algorithms using a benchmark dataset. PLoS ONE 8(10), 1–11 (2013). https://doi.org/10.1371/journal.pone.0075196
CrossRef
Google Scholar
Ni, Q., Hernando, A.B.G., de la Cruz, I.P.: The elderly’s independent living in smart homes: a characterization of activities and sensing infrastructure survey to facilitate services development. Sensors 15(5), 11312–11362 (2015). https://doi.org/10.3390/s150511312
CrossRef
Google Scholar
Espana-Boquera, S., Castro-Bleda, M.J., Gorbe-Moya, J., Zamora-Martinez, F.: Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Trans. Pattern Anal. Mach. Intell. 33, 767–779 (2011). https://doi.org/10.1109/TPAMI.2010.141
CrossRef
Google Scholar
Nazerfard, E., Cook, D.J.: CRAFFT: an activity prediction model based on Bayesian networks. J. Ambient Intell. Humanized Comput. 6(2), 193–205 (2015). https://doi.org/10.1007/s12652-014-0219-x
CrossRef
Google Scholar
Ordonez, J., Iglesias, J.A., de Toledo, P., Ledezma, A., Sanchis, A.: Online activity recognition using evolving classifiers. Expert Syst. Appl. 40(4), 1248–1255 (2013). https://doi.org/10.1016/j.eswa.2012.08.066
CrossRef
Google Scholar
Vail, D.L., Veloso, M.M., Lafferty, J.D.: Conditional random fields for activity recognition. In: AAMAS 2007 Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1–8 (2007). https://doi.org/10.1145/1329125.1329409
Lin, W., Wu, Z., Lin, L., Wen, A., Li. J.: An ensemble random forest algorithm for insurance big data analysis. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2738069
Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., Xin, D., Xin, R., Franklin, M.J., Zadeh, R., Zaharia, M., Talwalkar, A.: MLlib: machine learning in apache spark. J. Mach. Learn. Res. 17(1), 1–7 (2016)
MathSciNet
MATH
Google Scholar