Skip to main content

Optimization of Multistage Tourist Route for Electric Vehicle

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 764)

Abstract

This paper presents heuristics approach for the problem of generation an optimal multistage tourist route of electric vehicle (EV). For the given starting and a final point (being EV charging stations) the points of interests (POIs) are included which maximizing the tourist attractiveness. Furthermore the intermediate EV charging stations are selected to the route, in order to after specified number of kilometers a tourist could recharge the batteries and move on to the next stage of a route. Greedy algorithm strengthened the local search methods is proposed by us. Computational tests are conducted on realistic database including POIs and EV charging stations. Results and the execution time of the algorithm show that the presented solution could be a part of software module which generates the most interesting route taking into consideration driving range of EV battery.

Keywords

  • Optimization
  • Tourist trip design problem
  • Electric vehicle

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-91189-2_19
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-91189-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Divsalar, A., Vansteenwegen, P., Srensen, K., Cattrysse, D.: A memetic algorithm for the orienteering problem with hotel selection. Eur. J. Oper. Res. 237(1), 29–49 (2014). https://doi.org/10.1016/j.ejor.2014.01.001

    CrossRef  MATH  Google Scholar 

  2. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.: A survey on algorithmic approaches for solving tourist trip design problems. J. Heuristics 20(3), 291–328 (2014). https://doi.org/10.1007/s10732-014-9242-5

    CrossRef  Google Scholar 

  3. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logistics. 34, 307–318 (1987). https://doi.org/10.1002/1520-6750(198706)

    CrossRef  Google Scholar 

  4. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016). https://doi.org/10.1016/j.ejor.2016.04.059

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Karbowska-Chilinska, J., Zabielski, P.: Genetic algorithm with path relinking for the orienteering problem with time widows. Fundamenta Informaticae. 135(4), 419–431 (2014). https://doi.org/10.3233/FI-2014-1132

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Karbowska-Chilinska, J., Zabielski, P.: Maximization of attractiveness EV tourist routes. In: Computer Information Systems and Industrial Management, CISIM 2017, pp. 514–525 (2017). https://doi.org/10.1007/978-3-319-59105-6_44

    CrossRef  Google Scholar 

  7. Ostrowski, K.: Evolutionary algorithm for the time-dependent orienteering problem. In: Computer Information Systems and Industrial Management, CISIM 2017, pp. 50–62 (2017). https://doi.org/10.1007/978-3-319-59105-6_5

    CrossRef  Google Scholar 

  8. Ostrowski, K., Karbowska-Chilinska, J., Koszelew, J., Zabielski, P.: Evolution-inspired local improvement algorithm solving orienteering problem. Ann. Oper. Res. 1–25 (2017). https://doi.org/10.1007/s10479-016-2278-1

  9. Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984). https://doi.org/10.1057/jors.1984.162

    CrossRef  Google Scholar 

  10. Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iterated local search for the team orienteering problem with time windows. Comput. Oper. Res. 36, 3281–3290 (2009). https://doi.org/10.1016/j.cor.2009.03.008

    CrossRef  MATH  Google Scholar 

  11. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011). https://doi.org/10.1016/j.ejor.2010.03.045

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Zabielski, P., Karbowska-Chilinska, J., Koszelew, J., Ostrowski, K.: A genetic algorithm with grouping selection and searching operators for the orienteering problem. In: ACIIDS 2015, LNCS, vol. 9012, pp. 31–40 (2015). https://doi.org/10.1007/978-3-319-15705-4_4

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Polish Ministry of Science and Higher Education at the Bialystok University of Technology (grant S/WI/1/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Karbowska-Chilinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Karbowska-Chilinska, J., Chociej, K. (2019). Optimization of Multistage Tourist Route for Electric Vehicle. In: Silhavy, R. (eds) Artificial Intelligence and Algorithms in Intelligent Systems. CSOC2018 2018. Advances in Intelligent Systems and Computing, vol 764. Springer, Cham. https://doi.org/10.1007/978-3-319-91189-2_19

Download citation