FAN: Framework for Authentication of Nodes in Mobile Adhoc Environment of Internet-of-Things

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 763)


The Mobile Adhoc Network (MANET) has undergone significant improvement in the form of routing capabilities but still it lacks security potentials owing to its dynamic topology problems. Adoption of MANET in ubiquitous environment e.g. Internet-of-Things (IoT) could significant increase the communication capability but it could introduce significant level of threats too at same time. Therefore, the proposed manuscript introduces a Framework for Authentication (FAN) of mobile nodes where the technique first offers light-weight ciphering technique to initial stage of node communication followed by providing a significant access permission to authorized mobile nodes only to participate in data dissemination process. This analytical technique is also proven to offer communication efficiency apart from security against major potential threats on IoT environment.


Internet-of-Things Mobile adhoc network Security  Access control Secure permission Ubiquitous 


  1. 1.
    Movahedi, Z., Hosseini, Z., Bayan, F., Pujolle, G.: Trust-distortion resistant trust management frameworks on mobile Ad Hoc networks: a survey. IEEE Commun. Surv. Tutorials 18(2), 1287–1309 (2016)CrossRefGoogle Scholar
  2. 2.
    Lima, M.N., dos Santos, A.L., Pujolle, G.: A survey of survivability in mobile Ad Hoc networks. IEEE Commun. Surv. Tutorials 11(1), 66–77 (2009)CrossRefGoogle Scholar
  3. 3.
    Govindan, K., Mohapatra, P.: Trust computations and trust dynamics in mobile Ad Hoc networks: a survey. IEEE Commun. Surv. Tutorials 14(2), 279–298 (2012)CrossRefGoogle Scholar
  4. 4.
    Surendran, S., Prakash, S.: An ACO look-ahead approach to QOS enabled fault- tolerant routing in MANETs. China Commun. 12(8), 93–110 (2015)CrossRefGoogle Scholar
  5. 5.
    Zhao, S., Aggarwal, A., Frost, R., Bai, X.: A survey of applications of identity-based cryptography in mobile Ad-Hoc networks. IEEE Commun. Surv. Tutorials 14(2), 380–400 (2012)CrossRefGoogle Scholar
  6. 6.
    Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017)CrossRefGoogle Scholar
  7. 7.
    Verma, S., Kawamoto, Y., Fadlullah, Z.M., Nishiyama, H., Kato, N.: A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Commun. Surv. Tutorials 19(3), 1457–1477 (2017)CrossRefGoogle Scholar
  8. 8.
    Anagnostopoulos, T., et al.: Challenges and opportunities of waste management in IoT-enabled smart cities: a survey. IEEE Trans. Sustain. Comput. 2(3), 275–289 (2017)CrossRefGoogle Scholar
  9. 9.
    Xu, L., Collier, R., O’Hare, G.M.P.: A Survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet Things J. 4(5), 1229–1249 (2017)CrossRefGoogle Scholar
  10. 10.
    Yang, K., Blaauw, D., Sylvester, D.: Hardware designs for security in Ultra-Low-Power IoT systems: an overview and survey. IEEE Micro 37(6), 72–89 (2017)CrossRefGoogle Scholar
  11. 11.
    Chauvenet, C., Etheve, G., Sedjai, M., Sharma, M.: G3-PLC based IoT sensor networks for SmartGrid. In: 2017 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), Madrid, pp. 1–6 (2017)Google Scholar
  12. 12.
    Sen, A., Madria, S.: Risk assessment in a sensor cloud framework using attack graphs. IEEE Trans. Serv. Comput. 10(6), 942–955 (2017)CrossRefGoogle Scholar
  13. 13.
    Peter, S., Westhoff, D., Castelluccia, C.: A survey on the encryption of convergecast traffic with in-network processing. IEEE Trans. Dependable Secure Comput. 7(1), 20–34 (2010)CrossRefGoogle Scholar
  14. 14.
    Han, G., Jiang, J., Sun, N., Shu, L.: Secure communication for underwater acoustic sensor networks. IEEE Commun. Mag. 53(8), 54–60 (2015)CrossRefGoogle Scholar
  15. 15.
    Deogirikar, J., Vidhate, A.: Security attacks in IoT: a survey. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, pp. 32–37 (2017)Google Scholar
  16. 16.
    Pongle, P., Chavan, G.: A survey: attacks on RPL and 6LoWPAN in IoT. In: 2015 International Conference on Pervasive Computing (ICPC), Pune, pp. 1–6 (2015)Google Scholar
  17. 17.
    Mosenia, A., Jha, N.K.: A comprehensive study of security of Internet-of-Things. IEEE Trans. Emerg. Topics Comput. 5(4), 586–602 (2017)CrossRefGoogle Scholar
  18. 18.
    Xu, G., Cao, Y., Ren, Y., Li, X., Feng, Z.: Network security situation awareness based on semantic ontology and user-defined rules for Internet of Things. IEEE Access 5, 21046–21056 (2017)CrossRefGoogle Scholar
  19. 19.
    Yang, Y., Wu, L., Yin, G., Li, L., Zhao, H.: A survey on security and privacy issues in Internet-of-Things. IEEE Internet Things J. 4(5), 1250–1258 (2017)CrossRefGoogle Scholar
  20. 20.
    Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on Internet of Things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4(5), 1125–1142 (2017)CrossRefGoogle Scholar
  21. 21.
    Hu, P., Ning, H., Qiu, T., Song, H., Wang, Y., Yao, X.: Security and privacy preservation scheme of face identification and resolution framework using fog computing in Internet of Things. IEEE Internet Things J. 4(5), 1143–1155 (2017)CrossRefGoogle Scholar
  22. 22.
    Villari, M., Fazio, M., Dustdar, S., Rana, O., Chen, L., Ranjan, R.: Software defined membrane: policy-driven edge and Internet of Things security. IEEE Cloud Comput. 4(4), 92–99 (2017)CrossRefGoogle Scholar
  23. 23.
    Perazzo, P., Vallati, C., Anastasi, G., Dini, G.: DIO Suppression attack against routing in the Internet of Things. IEEE Commun. Lett. 21(11), 2524–2527 (2017)CrossRefGoogle Scholar
  24. 24.
    Lyu, X., et al.: Optimal schedule of mobile edge computing for Internet of Things using partial information. IEEE J. Sel. Areas Commun. 35(11), 2606–2615 (2017)CrossRefGoogle Scholar
  25. 25.
    Qiu, T., Qiao, R., Wu, D.O.: EABS: an event-aware backpressure scheduling scheme for emergency Internet of Things. IEEE Trans. Mob. Comput. 17(1), 72–84 (2018)CrossRefGoogle Scholar
  26. 26.
    Chen, J., Zhu, Q.: Security as a service for cloud-enabled internet of controlled things under advanced persistent threats: a contract design approach. IEEE Trans. Inf. Forensics Secur. 12(11), 2736–2750 (2017)CrossRefGoogle Scholar
  27. 27.
    Huang, Q., Yang, Y., Wang, L.: Secure data access control with ciphertext update and computation outsourcing in fog computing for Internet of Things. IEEE Access 5, 12941–12950 (2017)CrossRefGoogle Scholar
  28. 28.
    Wang, N., Jiang, T., Li, W., Lv, S.: Physical-layer security in Internet of Things based on compressed sensing and frequency selection. IET Commun. 11(9), 1431–1437 (2017)CrossRefGoogle Scholar
  29. 29.
    Yang, Y., Peng, H., Li, L., Niu, X.: General theory of security and a study case in Internet of Things. IEEE Internet Things J. 4(2), 592–600 (2017)CrossRefGoogle Scholar
  30. 30.
    Occhiuzzi, C., Amendola, S., Manzari, S., Caizzone, S., Marrocco, G.: Configurable radiofrequency identification sensing breadboard for industrial Internet of Things. Electron. Lett. 53(3), 129–130 (2017)CrossRefGoogle Scholar
  31. 31.
    Anil, G.N., Venugopal Reddy, A.: Semantic probabilistic modelling of novel routing protocol with implication of cumulative routing attack in mobile adhoc network. Int. J. Comput. Sci. Issues 9(1) (2012)Google Scholar
  32. 32.
    Anil, G.N., Venugopal Reddy, A.: Strategical modelling with virtual competition for analyzing behavior of malicious node in mobile Adhoc network to prevent decamping. Int. J. Comput. Sci. Issues 8(6) (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringBMSITBengaluruIndia

Personalised recommendations