Advertisement

FMHT: A Novel Framework for Mitigating Hidden Terminal Issue in Wireless Mesh Network

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 763)

Abstract

Various researchers have theoretically discussed the Hidden terminal problem in Wireless Mesh Network (WMN), but almost no standard implementation or modeling is being explored in recent years when WMN is used in large-scale communication in the presence of interference and collision. Therefore, this paper presents a framework called as Framework for Mitigating Hidden Terminal FMHT that contributes to the identification of hidden terminal followed by compensating the communication loss by introducing a novel algorithm for enhancing channel capacity. The sole target was to improve the Quality-of-Service in WMN over different conditions of dynamic traffic. The proposed system also assists in formulating an effective decision for traffic flow admission where the simulation outcome shows better improvement in data delivery performance in contrast to existing techniques.

Keywords

Wireless mesh network Hidden terminal issue Routing performance Throughput Collision Dynamic traffic 

References

  1. 1.
    Ma, L., Khreishah, A., Zhang, Y., Yan, M.: Wireless Algorithms, Systems, and Applications. Springer, Boston (2017)Google Scholar
  2. 2.
    Sinha, K., Ghosh, S.C., Sinha, B.P.: Wireless Networks and Mobile Computing. CRC Press, Boca Raton (2016)Google Scholar
  3. 3.
    Boroumand, L., Khokhar, R.H., Bakhtiar, L.A., Pourvahab, M.: A review of techniques to resolve the hidden node problem in wireless networks. Smart Comput. Rev. 2(2) (2012)Google Scholar
  4. 4.
    Al-Saadi, A., Setchi, R., Hicks, Y., Allen, S.M.: Routing protocol for heterogeneous wireless mesh networks. IEEE Trans. Veh. Technol. 65(12), 9773–9786 (2016)CrossRefGoogle Scholar
  5. 5.
    Karia, D.C., Jadiya, A., Kapuskar, R.: Review of routing metrics for wireless mesh networks. In: 2013 International Conference on Machine Intelligence and Research Advancement, Katra, pp. 47–52 (2013)Google Scholar
  6. 6.
    Ahmeda, S.S., Esseid, E.A.: Review of routing metrics and protocols for wireless mesh network. In: 2010 Second Pacific-Asia Conference on Circuits, Communications and System, Beijing, pp. 27–30 (2010)Google Scholar
  7. 7.
    Lee, C., Shin, D., Choi, S.: Weighted conflict-aware channel assignment in 802.11-based mesh networks. In: 2016 18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, p. 1 (2016)Google Scholar
  8. 8.
    Takeda, T., Yoshihiro, T.: A queue-length based distributed scheduling for CSMA-driven wireless mesh networks. In: 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, pp. 1–6 (2016)Google Scholar
  9. 9.
    Yoshihiro, T., Nishimae, T.: Practical fast scheduling and routing over slotted CSMA for wireless mesh networks. In: 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing, pp. 1–10 (2016)Google Scholar
  10. 10.
    Naveen, T.H., Vasanth, G.: Qualitative study of existing research techniques on wireless mesh network. Int. J. Adv. Comput. Sci. Appl. 8(3), 49–57 (2017)Google Scholar
  11. 11.
    Boushaba, M., Hafid, A., Gendreau, M.: Source-based routing in wireless mesh networks. IEEE Syst. J. 10(1), 262–270 (2016)CrossRefGoogle Scholar
  12. 12.
    Aoudia, F.A., Gautier, M., Berder, O.: OPWUM: opportunistic MAC protocol leveraging wake-up receivers in WSNs. J. Sens. 2016, 1–9 (2016)CrossRefGoogle Scholar
  13. 13.
    Avallone, S., Banchs, A.: A channel assignment and routing algorithm for energy harvesting multiradio wireless mesh networks. IEEE J. Sel. Areas Commun. 34(5), 1463–1476 (2016)CrossRefGoogle Scholar
  14. 14.
    Igarashi, Y., Matsuura, Y., Koizumi, M., Wakamiya, N.: Priority-based dynamic multichannel transmission scheme for industrial wireless networks. Wirel. Commun. Mob. Comput. 2017, 1–14 (2017)CrossRefGoogle Scholar
  15. 15.
    Peng, Y., Gong, X., Guo, L., Kong, D.: A survivability routing mechanism in SDN enabled wireless mesh networks: design and evaluation. China Commun. 13(7), 32–38 (2016)CrossRefGoogle Scholar
  16. 16.
    Roh, H.T., Lee, J.W.: Channel assignment, link scheduling, routing, and rate control for multi-channel wireless mesh networks with directional antennas. J. Commun. Netw. 18(6), 884–891 (2016)Google Scholar
  17. 17.
    Zhou, A., Liu, M., Li, Z., Dutkiewicz, E.: Joint traffic splitting, rate control, routing, and scheduling algorithm for maximizing network utility in wireless mesh networks. IEEE Trans. Veh. Technol. 65(4), 2688–2702 (2016)CrossRefGoogle Scholar
  18. 18.
    Shao, X., Wang, R., Huang, H., Sun, L.: Load balanced coding-aware multipath routing for wireless mesh networks. Chin. J. Electron. 24(1), 8–12 (2015)CrossRefGoogle Scholar
  19. 19.
    Nugroho, D.A., Prasetiadi, A., Kim, D.S.: Male-silkmoth-inspired routing algorithm for large-scale wireless mesh networks. J. Commun. Netw. 17(4), 384–393 (2015)CrossRefGoogle Scholar
  20. 20.
    Luo, C., Guo, S., Guo, S., Yang, L.T., Min, G., Xie, X.: Green communication in energy renewable wireless mesh networks: routing, rate control, and power allocation. IEEE Trans. Parallel Distrib. Syst. 25(12), 3211–3220 (2014)CrossRefGoogle Scholar
  21. 21.
    Gu, Y., Han, H., Li, X., Guo, J.: Network coding-aware routing protocol in wireless mesh networks. Tsinghua Sci. Technol. 20(1), 40–49 (2015)CrossRefGoogle Scholar
  22. 22.
    Darehshoorzadeh, A., De Grande, R.E., Boukerche, A.: Toward a comprehensive model for performance analysis of opportunistic routing in wireless mesh networks. IEEE Trans. Veh. Technol. 65(7), 5424–5438 (2016)CrossRefGoogle Scholar
  23. 23.
    Sheshadri, R.K., Koutsonikolas, D.: An experimental study of routing metrics in 802.11n wireless mesh networks. IEEE Trans. Mob. Comput. 13(12), 2719–2733 (2014)CrossRefGoogle Scholar
  24. 24.
    Alrayes, M.M., Biswash, S.K., Tyagi, N., Tripathi, R.: An enhancement of AODV with multi-radio in hybrid wireless mesh network. ISRN Electron. 2013, 1–13 (2013)CrossRefGoogle Scholar
  25. 25.
    Chen, J., He, K., Du, R., Zheng, M., Xiang, Y., Yuan, Q.: Dominating set and network coding-based routing in wireless mesh networks. IEEE Trans. Parallel Distrib. Syst. 26(2), 423–433 (2015)CrossRefGoogle Scholar
  26. 26.
    Kim, S.H., Chong, P.K., Kim, D.: A location-free semi-directional-flooding technique for on-demand routing in low-rate wireless mesh networks. IEEE Trans. Parallel Distrib. Syst. 25(12), 3066–3075 (2014)CrossRefGoogle Scholar
  27. 27.
    Yoshihiro, T., Noi, T.: Collision-free channel assignment is possible in IEEE802.11-based wireless mesh networks. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, pp. 1–6 (2017)Google Scholar
  28. 28.
    Yoshihiro, T., Nishimae, T.: Practical fast scheduling and routing over slotted CSMA for wireless mesh networks. In: 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing, pp. 1–10 (2016)Google Scholar
  29. 29.
    Hammash, D., Kim, M., Lee, B.: HIAM: hidden node and interference aware routing metric for multi-channel multi-radio mesh networks. In: ACM Conference (2013)Google Scholar
  30. 30.
    Matoba, A., Hanada, M., Kanemitsu, H., Kim, M.W.: Asymmetric RTS/CTS for exposed node reduction in IEEE802.11 ad hoc networks. J. Comput. Sci. Eng. 8(2), 107–118 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Visvesvaraya Technological UniversityBelagaviIndia
  2. 2.Department of Computer Science and EngineeringGovernment Engineering CollegeMandya DistrictIndia

Personalised recommendations