Skip to main content

Energy-Aware Task Allocation in WSNs

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 163))

Abstract

Complex wireless sensor network applications as those in Internet of Things or in-network processing are pushing the requirements for energy efficiency and data processing drastically. Executing the tasks of such complex applications in a single node may lead it to die soon, since the nodes in WSNs are usually with limited and generally irreplaceable power sources. How to distribute the tasks across the network and simultaneously balance the energy consumption of each node to achieve energy efficiency and to extend the network lifetime are crucial and urgent requirements in WSNs. Energy-aware task allocation (sometimes also called workload distribution) technologies, which have been deeply studied in multiprocessor systems, grid computing, and system on chip (SoC), are attracting the attention of the research community in WSNs. Due to the limited energy source and computing capability as well as the wireless communication, the task allocation problem in WSNs is different from traditional wired systems. This chapter provides an application-level taxonomy and an in-depth review of task allocation approaches in WSNs. It enables the readers to gain a clear view of current task allocation approaches, by taking the evaluation metrics and the modeling methods of the problem into account.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The number of the source tasks are not limited to one, it is determined by specific applications.

  2. 2.

    Note that, the network structures of WSNs are not limited to multi-hop mesh and hierarchical cluster, there are also other types, such as location-based network structures.

  3. 3.

    MEPS is the maximum entropy power spectrum (MEPS) computation which is adapted from Ptolemy II design environment and the spectrum computation refers to convert signals from time domain to frequency domain.

  4. 4.

    The important partition cuts are represented by the binary vectors as the same as the partition cut \(\mathbb {X}\) in Sect. 5.2.

References

  1. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy-aware wireless microsensor networks. IEEE Signal Process. Mag. 19(2), 40–50 (2002)

    Article  Google Scholar 

  2. Barr, K.C., Asanovi, K.: Energy-aware lossless data compression. ACM Trans. Comput. Syst. 24(3), 250–291 (2006)

    Article  Google Scholar 

  3. Tyagi, S., Kumar, N.: A systematic review on clustering and routing techniques based upon LEACH protocol for wireless sensor networks. J. Netw. Comput. Appl. 36(2), 623–645 (2013)

    Article  Google Scholar 

  4. Ren, F., Zhang, J., He, T., Lin, C., Ren, S.K.D.: EBRP: energy-balanced routing protocol for data gathering in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(12), 2108–2125 (2011)

    Article  Google Scholar 

  5. Zhao, M., Yang, Y., Wang, C.: Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks. IEEE Trans. Mobile Comput. 14(4), 770–785 (2015)

    Article  Google Scholar 

  6. Liang, Y., Peng, W.: Minimizing energy consumptions in wireless sensor networks via two-modal transmission. SIGCOMM Comput. Commun. Rev. 40(1), 12–18 (2010)

    Article  Google Scholar 

  7. Vecchio, M., Giaffreda, R., Marcelloni, F.: Adaptive lossless entropy compressors for tiny iot devices. IEEE Trans. Wirel. Commun. 13(2), 1088–1100 (2014)

    Article  Google Scholar 

  8. Yu, W., Huang, Y., Garcia-Ortiz, A.: An altruistic compression-scheduling scheme for cluster-based wireless sensor networks. In: 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 73–81, June 2015

    Google Scholar 

  9. Liu, C., Wu, K., Pei, J.: An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Trans. Parallel Distrib. Syst. 18(7), 1010–1023 (2007)

    Article  Google Scholar 

  10. Huang, Y., Yu, W., Garcia-Ortiz, A.: PKF: a communication cost reduction schema based on Kalman filter and data prediction for wireless sensor networks. In: Proceedings of 26th IEEE International System-on-Chip Conference, CAS, pp. 73–78 (2013)

    Google Scholar 

  11. Huang, Y., Yu, W., Osewold, C., Garcia-Ortiz, A.: Analysis of PKF: a communication cost reduction scheme for wireless sensor networks. IEEE Trans. Wirel. Commun. 15(2), 843–856 (2016)

    Article  Google Scholar 

  12. Tang, L., Sun, Y., Gurewitz, O., Johnson, D.B.: PW-MAC: an energy-efficient predictive-wakeup MAC protocol for wireless sensor networks. In: INFOCOM, 2011 Proceedings IEEE, pp. 1305–1313, April 2011

    Google Scholar 

  13. Wu, Y., Li, X.Y., Li, Y., Lou, W.: Energy-efficient wake-up scheduling for data collection and aggregation. IEEE Trans. Parallel Distrib. Syst. 21(2), 275–287 (2010)

    Article  Google Scholar 

  14. de Meulenaer, G., Gosset, F., Standaert, F.X., Pereira, O.: On the energy cost of communication and cryptography in wireless sensor networks. In: 2008 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 580–585, October 2008

    Google Scholar 

  15. Shen, C., Plishker, W.L., Ko, D., Bhattacharyya, S.S., Goldsman, N.: Energy-driven distribution of signal processing applications across wireless sensor networks. ACM Trans. Sens. Netw. 6, Article. 8, 32 (2010)

    Google Scholar 

  16. Yang, J., Zhang, H., Ling, Y., Pan, C., Sun, W.: Task allocation for wireless sensor network using modified binary particle swarm optimization. IEEE Sens. J. 14(3), 882–892 (2014)

    Article  Google Scholar 

  17. Guo, W., Li, J., Chen, G., Niu, Y., Chen, C.: A PSO-optimized real-time fault-tolerant task allocation algorithm in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 26(12), 3236–3249 (2015)

    Article  Google Scholar 

  18. Shi, H., Wang, W., Kwok, N.: Energy dependent divisible load theory for wireless sensor network workload allocation. Math. Probl. Eng. 2012, Article ID 235289, 16 (2012). https://doi.org/10.1155/2012/235289

    Google Scholar 

  19. Li, X., Liu, X., Kang, H.: Sensing workload scheduling in sensor networks using divisible load theory. In: IEEE GLOBECOM 2007—IEEE Global Telecommunications Conference, Washington, DC, pp. 785–789 (2007). https://doi.org/10.1109/GLOCOM.2007.152

  20. Edalat, N., Tham, C.K., Xiao, W.: An auction-based strategy for distributed task allocation in wireless sensor networks. Comput. Commun. 35(8), 916–928 (2012)

    Article  Google Scholar 

  21. Edalat, N., Xiao, W., Tham, C.K., Keikha, E., Ong, L.-L.: A price-based adaptive task allocation for wireless sensor network. In: IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, Macau, pp. 888–893 (2009)

    Google Scholar 

  22. Dai, L., Chang, Y., Shen, Z.: An optimal task scheduling algorithm in wireless sensor networks. Int. J. Comput. Commun. Control 6(1), 101–112 (2011)

    Article  Google Scholar 

  23. Huang, Y., Yu, W., Garcia-Ortiz, A.: Accurate energy-aware workload distribution for wireless sensor networks using a detailed communication energy cost model. J. Low Power Electron. 10(2), 183–193 (2014)

    Article  Google Scholar 

  24. Jin, Y., Jin, J., Gluhak, A., Moessner, K., Palaniswami, M.: An intelligent task allocation scheme for multihop wireless networks. IEEE Tran. Parallel Distrib. Syst. 23(3), 444–451 (2012)

    Article  Google Scholar 

  25. Yu, W., Huang, Y., Garcia-Ortiz, A.: Modeling optimal dynamic scheduling for energy-aware workload distribution in wireless sensor networks. In: Proceedings of 12th International Conference on Distributed Computing in Sensor Systems (DCOSS 2016), Washington DC, pp. 116–118 (2016)

    Google Scholar 

  26. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: 33rd Annual Hawaii International Conference on System Sciences, pp. 10. IEEE Press (2000)

    Google Scholar 

  27. Rappaport, T.: Ad Hoc Mobile Wireless Sensor Networks: Protocols and Systemes. Prentice Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  28. Dai, L., Shen, Z., Chen, T. and Chang, Y.: Analysis and modeling of task scheduling in wireless sensor network based on divisible load theory. Int. J. Commun. Syst. (Washington, DC) 27(5), 721–731 (2014)

    Article  Google Scholar 

  29. Yu, W., Huang, Y., Garcia-Ortiz, A.: Distributed optimal on-line task allocation algorithm for wireless sensor networks. IEEE Sens. J. 18(1), 446–458 (2018)

    Article  Google Scholar 

  30. Jin, Y., Vural, S., Gluhak, A., Moessner, K.: Dynamic task allocation in multi-hop multimedia wireless sensor networks with low mobility. Sensors 13(10), 13998–14028 (2013)

    Article  Google Scholar 

  31. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, Article 2, 291–307 (1970)

    Article  Google Scholar 

  32. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th Conference on Design Automation, pp. 175–181. IEEE (1982)

    Google Scholar 

  33. Hagras, T., Janecek, J.: A high performance, low complexity algorithm for compile-time job scheduling in homogeneous computing environments. In: 2003 International Conference on Parallel Processing Workshops, pp. 149–155 (2003)

    Google Scholar 

  34. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108, Orlando, FL (1997)

    Google Scholar 

  35. Liu, J., Mei, Y., Li, X.: An analysis of the inertia weight parameter for binary particle swarm optimization. IEEE Trans. Evolut. Comput. 20(5), 666–681 (2016)

    Article  Google Scholar 

  36. Melanie, M.: An Introduction to Genetic Algorithms, Fifth printing. Massachusetts London, England, Cambridge (1999)

    Google Scholar 

  37. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co. (1989)

    Google Scholar 

  38. Tsiatsis, V., Kumar, R., Srivastava, M.B.: Computation hierarchy for in-network processing. Mobile Netw. Appl. 10(4), 505–518 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Garcia-Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, W., Huang, Y., Garcia-Ortiz, A. (2019). Energy-Aware Task Allocation in WSNs. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-91146-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91146-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91145-8

  • Online ISBN: 978-3-319-91146-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics