Skip to main content

Maximum Entropy Analysis of Flow Networks with Structural Uncertainty (Graph Ensembles)

  • Conference paper
  • First Online:
Book cover Bayesian Inference and Maximum Entropy Methods in Science and Engineering (maxent 2017)

Abstract

This study examines MaxEnt methods for probabilistic inference of the state of flow networks, including pipe flow, electrical and transport networks, subject to physical laws and observed moments. While these typically assume networks of invariant graph structure, we here consider higher-level MaxEnt schemes, in which the network structure constitutes part of the uncertainty in the problem specification. In physics, most studies on the statistical mechanics of graphs invoke the Shannon entropy \(H_G^{Sh} = - \sum \nolimits _{\Omega _G} P(G) \ln P(G)\), where G is the graph and \(\Omega _G\) is the graph ensemble. We argue that these should adopt the relative entropy \(H_G = - \sum \nolimits _{\Omega _G} P(G) \ln {P(G)}/{Q(G)}\), where Q(G) is the graph prior associated with the graph macrostate G. By this method, the user is able to employ a simplified accounting over graph macrostates rather than need to count individual graphs. Using combinatorial methods, we here derive a variety of graph priors for different graph ensembles, using different macrostate partitioning schemes based on the node or edge counts. A variety of such priors are listed herein, for ensembles of undirected or directed graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waldrip, S.H., Niven, R.K.: Maximum entropy derivation of quasi-Newton methods. SIAM J. Optim. 26(4), 2495–2511 (2016)

    Article  MathSciNet  Google Scholar 

  2. Waldrip, S.H., Niven, R.K.: Comparison between Bayesian and maximum entropy analyses of flow networks. Entropy 19(2), 58 (2017)

    Article  MathSciNet  Google Scholar 

  3. Waldrip, S.H., Niven, R.K., Abel, M., Schlegel, M.: Maximum entropy analysis of hydraulic pipe flow networks. J. Hydraul. Eng. ASCE 142(9), 04016028 (2016)

    Article  Google Scholar 

  4. Waldrip, S.H., Niven, R.K., Abel, M., Schlegel, M.: Reduced-parameter method for maximum entropy analysis of hydraulic pipe flow networks. J. Hydraul. Eng. ASCE 30 (2017). (accepted)

    Google Scholar 

  5. Albert, A., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47–97 (2001)

    Article  MathSciNet  Google Scholar 

  6. Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E 70, 066117 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bianconi, G.: Entropy of network ensembles. Phys. Rev. E 79, 036114 (2009)

    Article  MathSciNet  Google Scholar 

  8. Anand, K., Bianconi, G.: Entropy measures for networks: toward an information theory of complex topologies. Phys. Rev. E 80, 045102(R) (2009)

    Article  Google Scholar 

  9. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379, 623 (1948)

    Article  MathSciNet  Google Scholar 

  10. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  11. Kapur, J.N., Kesevan, H.K.: Entropy Optimisation Principles with Applications. Academic Press Inc., Boston (1992)

    Google Scholar 

  12. Brillouin, L.: Les Statistiques Quantiques et Leurs Applications. Les Presses Universitaires de France, Paris (1930)

    MATH  Google Scholar 

  13. Niven, R.K., Grendar, M.: Generalized classical, quantum and intermediate statistics and the Polya urn model. Phys. Lett. A 373, 621–626 (2009)

    Article  MathSciNet  Google Scholar 

  14. Niven, R.K.: Combinatorial entropies and statistics. Eur. Phys. J. B 70, 49–63 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project acknowledges funding support from the Australian Research Council Discovery Projects Grant DP140104402, Go8/DAAD Australia-Germany Joint Research Cooperation Scheme RG123832 and the French Agence Nationale de la Recherche Chair of Excellence (TUCOROM) and the Institute Prime, Poitiers, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Niven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Employee of the Crown

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niven, R.K., Schlegel, M., Abel, M., Waldrip, S.H., Guimera, R. (2018). Maximum Entropy Analysis of Flow Networks with Structural Uncertainty (Graph Ensembles). In: Polpo, A., Stern, J., Louzada, F., Izbicki, R., Takada, H. (eds) Bayesian Inference and Maximum Entropy Methods in Science and Engineering. maxent 2017. Springer Proceedings in Mathematics & Statistics, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-319-91143-4_25

Download citation

Publish with us

Policies and ethics