Advertisement

Hypoxia Regulates MicroRNA Expression in the Human Carotid Body

  • Souren Mkrtchian
  • Kian Leong Lee
  • Jessica Kåhlin
  • Anette Ebberyd
  • Lorenz Poellinger
  • Malin Jonsson Fagerlund
  • Lars I. Eriksson
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1071)

Abstract

How hypoxia regulates gene expression in the human carotid body (CB) remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the impact of important post-transcriptional regulators, such as non-coding RNAs, and in particular miRNAs is not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins.

Keywords

Carotid body MicroRNA Hypoxia 

Notes

Acknowledgements

Supported by research grants from the Research Council for Medicine, Sweden, Stockholm County Council, Thorsten Söderberg Research Foundation, Gösta Fraenckels Foundation, Jeanssons Foundation, Tore Nilsons Fundation, Magnus Bergvalls Foundation, Capio Foundation, LPS Medical, Karolinska Institutet Funds and The Swedish Society for Medicine, all from Stockholm, Sweden.

References

  1. Bishop T, Talbot NP, Turner PJ, Nicholls LG, Pascual A, Hodson EJ, Douglas G, Fielding JW, Smith TG, Demetriades M, Schofield CJ, Robbins PA, Pugh CW, Buckler KJ, Ratcliffe PJ (2013) Carotid body hyperplasia and enhanced ventilatory responses to hypoxia in mice with heterozygous deficiency of PHD2. J Physiol 591:3565–3577CrossRefGoogle Scholar
  2. Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192CrossRefGoogle Scholar
  3. Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO, Tambuwala MM, Cummins EP, Taylor CT (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31:4087–4096CrossRefGoogle Scholar
  4. Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083CrossRefGoogle Scholar
  5. Chen Y, Zhang Z, Luo C, Chen Z, Zhou J (2016) MicroRNA-18b inhibits the growth of malignant melanoma via inhibition of HIF-1alpha-mediated glycolysis. Oncol Rep 36:471–479CrossRefGoogle Scholar
  6. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665CrossRefGoogle Scholar
  7. Hempleman SC, Warburton SJ (2013) Comparative embryology of the carotid body. Respir Physiol Neurobiol 185:3–8CrossRefGoogle Scholar
  8. Hodson EJ, Nicholls LG, Turner PJ, Llyr R, Fielding JW, Douglas G, Ratnayaka I, Robbins PA, Pugh CW, Buckler KJ, Ratcliffe PJ, Bishop T (2016) Regulation of ventilatory sensitivity and carotid body proliferation in hypoxia by the PHD2/HIF-2 pathway. J Physiol 594:1179–1195CrossRefGoogle Scholar
  9. Iturriaga R, Alcayaga J (2004) Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Res Brain Res Rev 47:46–53CrossRefGoogle Scholar
  10. Kahlin J, Mkrtchian S, Ebberyd A, Hammarstedt-Nordenvall L, Nordlander B, Yoshitake T, Kehr J, Prabhakar N, Poellinger L, Fagerlund MJ, Eriksson LI (2014) The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol 99:1089–1098CrossRefGoogle Scholar
  11. Kay JM, Laidler P (1977) Hypoxia and the carotid body. J Clin Pathol Suppl (R Coll Pathol) 11:30–44CrossRefGoogle Scholar
  12. Kole AJ, Swahari V, Hammond SM, Deshmukh M (2011) miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 25:125–130CrossRefGoogle Scholar
  13. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867CrossRefGoogle Scholar
  14. Lopez-Barneo J, Gonzalez-Rodriguez P, Gao L, Fernandez-Aguera MC, Pardal R, Ortega-Saenz P (2016) Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 310:C629–C642CrossRefGoogle Scholar
  15. Loscalzo J (2010) The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest 120:3815–3817CrossRefGoogle Scholar
  16. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stahler C, Meese E, Keller A (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44:3865–3877CrossRefGoogle Scholar
  17. Mkrtchian S, Kahlin J, Ebberyd A, Gonzalez C, Sanchez D, Balbir A, Kostuk EW, Shirahata M, Fagerlund MJ, Eriksson LI (2012) The human carotid body transcriptome with focus on oxygen sensing and inflammation--a comparative analysis. J Physiol 590:3807–3819CrossRefGoogle Scholar
  18. Nallamshetty S, Chan SY, Loscalzo J (2013) Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 64:20–30CrossRefGoogle Scholar
  19. Nowak JS, Michlewski G (2013) miRNAs in development and pathogenesis of the nervous system. Biochem Soc Trans 41:815–820CrossRefGoogle Scholar
  20. Ortega-Saenz P, Pardal R, Levitsky K, Villadiego J, Munoz-Manchado AB, Duran R, Bonilla-Henao V, Arias-Mayenco I, Sobrino V, Ordonez A, Oliver M, Toledo-Aral JJ, Lopez-Barneo J (2013) Cellular properties and chemosensory responses of the human carotid body. J Physiol 591:6157–6173CrossRefGoogle Scholar
  21. Pepper DR, Landauer RC, Kumar P (1995) Postnatal development of CO2-O2 interaction in the rat carotid body in vitro. J Physiol 485(Pt 2):531–541CrossRefGoogle Scholar
  22. Poellinger L, Johnson RS (2004) HIF-1 and hypoxic response: the plot thickens. Curr Opin Genet Dev 14:81–85CrossRefGoogle Scholar
  23. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611CrossRefGoogle Scholar
  24. Saldana MJ, Salem LE, Travezan R (1973) High altitude hypoxia and chemodectomas. Hum Pathol 4:251–263CrossRefGoogle Scholar
  25. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089CrossRefGoogle Scholar
  26. Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22:22–33CrossRefGoogle Scholar
  27. Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, Tuschl T (2013) Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci U S A 110:4255–4260CrossRefGoogle Scholar
  28. Zhu C, Zhou R, Zhou Q, Chang Y, Jiang M (2016) microRNA-539 suppresses tumor growth and tumorigenesis and overcomes arsenic trioxide resistance in hepatocellular carcinoma. Life Sci 166:34–40CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Souren Mkrtchian
    • 1
  • Kian Leong Lee
    • 2
  • Jessica Kåhlin
    • 1
    • 3
  • Anette Ebberyd
    • 1
  • Lorenz Poellinger
    • 2
    • 4
  • Malin Jonsson Fagerlund
    • 1
    • 3
  • Lars I. Eriksson
    • 1
    • 3
  1. 1.Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
  2. 2.Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
  3. 3.Function Perioperative Medicine and Intensive CareKarolinska University HospitalStockholmSweden
  4. 4.Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden

Personalised recommendations