Leptin in the Commissural Nucleus Tractus Solitarii Increases the Glucose Responses to Carotid Chemoreceptors Activation by Cyanide

  • Mónica Lemus
  • Cynthia Mojarro
  • Sergio MonteroEmail author
  • Valery Melnikov
  • Mario Ramírez-Flores
  • Elena Roces de Álvarez-BuyllaEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1071)


Leptin is a protein hormone that plays a key role in the regulation of energy balance and glucose homeostasis. Leptin and all leptin receptor isoforms are present in the carotid bodies, but its precise function in glucose regulation and metabolism is not yet known. The aim of this study was to determine whether exogenous leptin, microinjected into the commissural nucleus tractus solitarii (cNTS), preceding sodium cyanide (NaCN) injection into the circulatory isolated carotid sinus (ICS), in vivo, modifies hyperglycemic reflex (HR) and brain glucose retention (BGR). In anesthetized Wistar rats (sodium pentobarbital, i.p. 3.3 mg/100 g/saline, Pfizer, Mex), arterial and venous blood samples were collected from silastic catheters implanted in the abdominal aorta and jugular sinus. Exogenous leptin (50 ng/20 nL of aCSF) or leptin vehicle (20 nL of aCSF) microinjected (stereotaxically) into the cNTS 4 min before NaCN (5 μg/100 g/50 μL saline into ICS) (experimental 1 [E1] and control 1[C1] groups, respectively) significantly increased HR and BGR compared with their basal values, but the increase was bigger in the E1 group. When leptin or aCSF were injected into the cNTS before saline (E2 and C2 groups, respectively) glucose responses did not vary when compared with their basal levels. Leptin and its receptors in the cNTS cells probably contribute to their sensitization during hypoxia.


Brain glucose retention Carotid body chemoreceptors cNTS- hyperglycemic reflex Leptin 



Our work was supported by Consejo Nacional de Ciencia y Tecnología, México (CB20121-177047).

Conflict of Interest Statement

The authors declare no conflict of interest.


  1. Alvarez-Buylla R, de Alvarez-Buylla ER (1988) Carotid sinus receptors participate in glucose homeostasis. Respir Physiol 72:347–360CrossRefGoogle Scholar
  2. Alvarez-Buylla R, Alvarez-Buylla E, Mendoza H, Montero SA, Alvarez-Buylla A (1997) Pituitary and adrenals are required for hypoglycemic reflex initiated by stimulation of CBR with cyanide. Am J Physiol (Reg Integr Comp Physiol) 272:R92–R399Google Scholar
  3. Alvarez-Buylla R, Huberman A, Montero S, Lemus M, Valles V, de Alvarez-Buylla ER (2003) Induction of brain glucose uptake by a factor secreted into cerebrospinal fluid. Brain Res 994:24–133CrossRefGoogle Scholar
  4. Ciriello J, Caverson M (2014) Carotid chemoreceptor afferent projections to leptin receptor containing neurons in nucleus of the solitary tract. Peptides 58:30–35CrossRefGoogle Scholar
  5. Ciriello J, Moreau JM (2013) Systemic administration of leptin potentiates the response of neurons in the nucleus of the solitary tract to chemoreceptor activation in the rat. Neurosci 229:887–899CrossRefGoogle Scholar
  6. Cowan A, Lewis JW, Macfarlane IR (1977) Agonist and antagonist properties of buprenorphine, a nociceptive agent. Br J Pharmacol 60:537–545CrossRefGoogle Scholar
  7. Denroche H, Huynh F, Kieffer T (2012) The role of leptin in glucose homeostasis. J Diabetes Invest 3:115–129CrossRefGoogle Scholar
  8. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232CrossRefGoogle Scholar
  9. García-Jiménez S, Bernal G, Martínez SMF, Monroy NA, Jaimes TC, Meneses AA et al (2015) Serum leptin is associated with metabolic syndrome in obese Mexican subjects. J Clin Lab Anal 29:5–9CrossRefGoogle Scholar
  10. Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL et al (2000) Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest 105:271–278CrossRefGoogle Scholar
  11. Huo L, Grill HJ, Bjorbaek C (2006) Divergent regulation of propiomelanocortin neurons by leptin in the nucleus of the solitary tract and the arcuate hypothalamic nucleus. Diabetes 55:567–573CrossRefGoogle Scholar
  12. Lemus M, Montero S, Leal C, Portilla de Buen E, Luquin S, García J et al (2011) Nitric oxide infused in the solitary tract nucleus blocks brain glucose retention induced by carotid chemoreceptor stimulation. Nitric Oxide 25:385–395CrossRefGoogle Scholar
  13. Liu L, Karkanis GB, Hawkins M, Barzilai N, Wang L, Rossetti L (1998) Intracerebroventricular leptin regultes hepatic but not peripheral glucose fluxes. J Biol Chem 273:31160–31167CrossRefGoogle Scholar
  14. McNay EC, Sherwin RS (2004) From artificial cerebro-spinal fluid (aCSF) to artificial extracellular fluid (aECF): microdialysis perfusate composition effects on in vivo brain ECF glucose measurements. J Neurosci Methods 132:35–43CrossRefGoogle Scholar
  15. Messenger SA, Moreau JM, Ciriello J (2013) Effect of chronic intermittent hypoxia on leptin and leptin receptor protein expression in the carotid body. Brain Res 1513:51–60CrossRefGoogle Scholar
  16. Mizuno A, Murakami T, Otani S, Kuwajima M, Shima K (1998) Leptin affects pancreatic endocrine functions through the sympathetic nervous system. Endocrinol 139:3863–3870CrossRefGoogle Scholar
  17. Montero S, Yarkov A, Álvarez-Buylla R (2000) Carotid chemoreceptors participation in brain glucose regulation. Adv Exp Med Biol 475:749–760CrossRefGoogle Scholar
  18. Morton GJ, Schwartz MW (2011) Leptin and the central nervous system control of glucose metabolism. Physiol Rev 91:389–411CrossRefGoogle Scholar
  19. Park S, Ahn IS, Kim da S (2010) Central infusion of leptin improves insulin resistance and suppresses b-cell function, but notb-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model. Life Sci 86:854–862CrossRefGoogle Scholar
  20. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, NewYorkGoogle Scholar
  21. Ueki M, Linn F, Hossmann K-A (1988) Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab 8:486–494CrossRefGoogle Scholar
  22. Uotani S, Bjørbaek C, Tornøe J, Flier JS (1999) Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downreg‑ulation. Diabetes 48:279–286CrossRefGoogle Scholar
  23. Wjidan K, Ibrahim E, Caszo B, Gnanou J, Singh H (2015) Dysregulation of glucose homeostasis following chronic exogenous administration of leptin in healthy Sprague-Dawley rats. JCDR 9:OF06–OF09PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mónica Lemus
    • 1
  • Cynthia Mojarro
    • 1
  • Sergio Montero
    • 1
    • 2
    Email author
  • Valery Melnikov
    • 2
  • Mario Ramírez-Flores
    • 2
  • Elena Roces de Álvarez-Buylla
    • 1
    Email author
  1. 1.Centro Universitario de Investigaciones BiomédicasUniversidad de ColimaColimaMexico
  2. 2.Facultad de MedicinaUniversidad de ColimaColimaMexico

Personalised recommendations