Skip to main content

Carotid Body Dysfunction in Diet-Induced Insulin Resistance Is Associated with Alterations in Its Morphology

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1071))

Abstract

The carotid body (CB) is organized in clusters of lobules containing type I cells and type II cells, in a ratio of approximately 4:1. The CB undergoes structural and functional changes during perinatal development, in response to a variety of environmental stimuli and in pathological conditions. Knowing that the CB acts as a metabolic sensor involved in the control of peripheral insulin sensitivity and that its overactivation contributes to the genesis of metabolic disturbances, herein we tested if diet-induced insulin resistance is associated with morphological alterations in the proportion of type I and type II cells in the CB. Diet induced insulin resistant model (HFHSu) was obtained by submitting Wistar rats to 14 weeks of 60% lipid-rich diet and 35% of sucrose in drinking water. The HFHSu group was compared with an aged-matched control group. Glucose tolerance and insulin sensitivity were measured in conscious animals before diet administration and 14 weeks after the diet protocol. The expression of tyrosine hydroxylase (TH) and nestin were assessed by immunohistochemistry to identify type I and type II cells, respectively. TH expression was also quantified by Western blot. As expected, 14 weeks of HFHSu diet induced a decrease in insulin sensitivity as well as in glucose tolerance. HFHsu diet increased the number of TH-positive type I cells by 192% and decreased nestin-postive type 2 cells by 74%. This increase in type II cells observed by immunohistochemistry correlates with an increase by 107% in TH expression quantified by Western blot. These results suggest that changes in CB morphology are associated with metabolic disturbances invoked by administration of a hypercaloric diet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bencini C, Pulera N (1991) The carotid bodies in bronchial asthma. Histopathology 18:195e200

    Article  Google Scholar 

  • Chen J, He L, Liu X, Dinger B, Stensaas L, Fidone S (2007) Effect of the endothelin receptor antagonist bosentan on chronic hypoxia-induced morphological and physiological changes in rat carotid body. Am J Physiol Lung Cell Mol Physiol 292(5):L1257–L1262

    Article  CAS  Google Scholar 

  • Conde SV, Obeso A, Rigual R, Monteiro EC, Gonzalez C (2006) Function of the rat carotid body chemoreceptors in ageing. J Neurochem 99:711–723

    Article  CAS  Google Scholar 

  • Conde SV, Monteiro EC, Rigual R, Obeso A, Gonzalez C (2012) Hypoxic intensity: a determinant for the contribution of ATP and adenosine to the genesis of carotid body chemosensory activity. J Appl Physiol (1985) 112(12):2002–2010

    Article  CAS  Google Scholar 

  • Conde SV, Sacramento JF, Guarino MP, Gonzalez C, Obeso A, Diogo LN, Monteiro EC, Ribeiro MJ (2014) Carotid body, insulin, and metabolic diseases: unraveling the links. Front Physiol 5:418

    Article  Google Scholar 

  • Conde SV, Sacramento JF, Chew D, Melo BF, Donega M, Dopson W, Robinson A, Prieto-lloret J, Patel S, Holisnski B, Ramnarain N, Pikov V, Guarino MP (2017) Bilateral electrical modulation of carotid sinus nerve improves glucose homeostasis in rodent type 2 diabetes model. Diabetologia 60(Suppl 1):S1–S608

    Google Scholar 

  • Cramer JA, Wiggins RH, Fudim M, Engelman ZJ, Sobotka PA, Shah LM (2014) Carotid body size on CTA: correlation with comorbidities. Clin Radiol 69(1):e33–e36

    Article  CAS  Google Scholar 

  • Felix AS, Rocha VN, Nascimento AL, de Carvalho JJ (2012) Carotid body remodelling in l-NAME-induced hypertension in the rat. J Comp Pathol 146(4):348–356

    Article  CAS  Google Scholar 

  • Hellstrom S, Pequignot JM (1982) Morphometric studies on intact and sympathectomised carotid bodies of long-term hypoxic rats. A light and electron microscopial study. In: Pallot DJ (ed) The peripheral arterial chemoreceptors. Croom Helm, London, pp 293–301

    Google Scholar 

  • Kato K, Wakai J, Matsuda H, Kusakabe T, Yamamoto Y (2012) Increased total volume and dopamine β-hydroxylase immunoreactivity of carotid body in spontaneously hypertensive rats. Auton Neurosci 169(1):49–55

    Article  CAS  Google Scholar 

  • McGregor KH, Gil J, Lahiri S (1984) A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol Respir Environ Exercise Physiol 57:1430–1438

    CAS  Google Scholar 

  • Nurse CA (2014) Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors. J Physiol 592(16):3419–3426

    Article  CAS  Google Scholar 

  • Nurse CA, Piskuric NA (2013) Signal processing at mammalian carotid body chemoreceptors. Semin Cell Dev Biol 24(1):22–30

    Article  CAS  Google Scholar 

  • Pardal R, Ortega-Sáenz P, Durán R, López-Barneo J (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131(2):364–377

    Article  CAS  Google Scholar 

  • Porzionato A et al (2013) Inflammatory and immunomodulatory mechanisms in the carotid body. Respir Physiol Neurobiol 187(1):31–40

    Article  CAS  Google Scholar 

  • Ribeiro MJ, Sacramento JF, Gonzalez C, Guarino MP, Monteiro EC, Conde SV (2013) Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 62(8):2905–2916

    Article  CAS  Google Scholar 

  • Sacramento JF*, Chew DJ*, Melo BF, Donegá M, Dopson W, Guarino MP, Robinson A, Prieto-Lloret J, Patel S, Holinski BJ, Ramnarain N, Pikov V, Famm K, Conde SV (2018) Bioelectronic modulation of carotid sinus nerve activity as a treatment for type 2 diabetes. Diabetologia. 61(3):700–710

    Article  CAS  Google Scholar 

  • Sacramento JF, Ribeiro MJ, Rodrigues T, Olea E, Melo BF, Guarino MP, Fonseca-Pinto R, Ferreira CR, Coelho J, Obeso A, Seiça R, Matafome P, Conde SV (2017) Functional abolition of carotid body activity restores insulin action and glucose homeostasis in rats: key roles for visceral adipose tissue and the liver. Diabetologia 60(1):158–168

    Article  CAS  Google Scholar 

  • Sivridis E, Pavlidis P, Fiska A, Pitsiava D, Giatromanolaki A (2011) Myocardial hypertrophy induces carotid body hyperplasia. J Forensic Sci 56(Suppl 1):S90–S94

    Article  Google Scholar 

  • Tse A, Yan L, Lee AK, Tse FW (2012) Autocrine and paracrine actions of ATP in rat carotid body. Can J Physiol Pharmacol 90(6):705–711

    Article  CAS  Google Scholar 

  • Wang ZY, Bisgard GE (2002) Chronic hypoxia-induced morphological and neurochemical changes in the carotid body. Microsc Res Tech 59:168–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.F.S. and B.F.M. are supported by PhD Grants from Portuguese Foundation for Science and Technology Reference PD/BD/105890/2014 and PD/BD/128336/2017, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia V. Conde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dos Santos, E., Sacramento, J.F., Melo, B.F., Conde, S.V. (2018). Carotid Body Dysfunction in Diet-Induced Insulin Resistance Is Associated with Alterations in Its Morphology. In: Gauda, E., Monteiro, M., Prabhakar, N., Wyatt, C., Schultz, H. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 1071. Springer, Cham. https://doi.org/10.1007/978-3-319-91137-3_13

Download citation

Publish with us

Policies and ethics