Skip to main content

Fundamentals of Cardiac T1 Mapping

  • Chapter
  • First Online:
T1-Mapping in Myocardial Disease

Abstract

In the first chapter, entitled Fundamentals of Cardiac T1 Mapping, we present an overview of the scientific principles, technical choices and challenges associated with cardiac T1 mapping. This chapter reminds the reader that T1 mapping relies on a physical model of the MR signal, and shows the ways in which this model breaks down when the underlying assumptions are not met.

We start from first principles and introduce the basics of body T1 mapping before moving onto the most widely used cardiac sequences: MOLLI and ShMOLLI (which are based on a Look-Locker sequence) and SASHA (based on a saturation recovery sequence). We take a particularly close look at the confounding factors that might impact T1 mapping results in practice.

Next, we give key insights into the T1 mapping post-processing techniques, which are often used to communicate T1 mapping results to radiologists and cardiologists. Finally, we emphasize the need for proper validation, provide suggestions for standardizing the field, and end the chapter with recommendations for the clinical application of cardiac T1 mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levitt MH. Spin dynamics: basics of nuclear magnetic resonance. Chichester, UK: Wiley; 2001.

    Google ScholarĀ 

  2. Tofts P. Quantitative MRI of the brain: measuring changes caused by disease. Chichester: Wiley; 2003.

    BookĀ  Google ScholarĀ 

  3. Frank JS. The myocardial interstitium: its structure and its role in ionic exchange. J Cell Biol. 1974;60(3):586ā€“601.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Rienks M, Papageorgiou A-P, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res. 2014;114(5):872ā€“88.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Scholz TD, Fleagle SR, Burns TL, Skorton DJ. Nuclear magnetic resonance relaxometry of the normal heart: relationship between collagen content and relaxation times of the four chambers. Magn Reson Imaging. 1989;7(6):643ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Hinojar R, Foote L, Ucar EA, Jackson T, Jabbour A, Chung-Yao Y, et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging. 2015;8(1):37ā€“46.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Kali A, Avinash K, Eui-Young C, Behzad S, Kim YJ, Bi X, et al. Native T1 mapping by 3-T CMR imaging for characterization of chronic myocardial infarctions. JACC Cardiovasc Imaging. 2015;8(9):1019ā€“30.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  8. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992ā€“2002.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, et al. Clinical indications for cardiovascular magnetic resonance (CMR): consensus panel report. Eur Heart J. 2004;25(21):1940ā€“65.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  10. Wesbey GE, Higgins CB, McNamara MT, Engelstad BL, Lipton MJ, Sievers R, et al. Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology. 1984;153(1):165ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Arheden H, Saeed M, Higgins CB, Gao DW, Bremerich J, Wyttenbach R, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology. 1999;211(3):698ā€“708.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, et al. Comparison of T1 mapping techniques for ECV quantification. histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson. 2012;14:88.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, et al. Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging. 2016;9(1):54ā€“63.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  14. Schelbert EB, Piehler KM, Zareba KM, Moon JC, Martin U, Messroghli DR, et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc. 2015;4(12):e002613.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Moon JC, Messroghli DR. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. https://doi.org/10.1186/1532-429X-15-92.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Kellman P, Wilson JR, Xue H, Patricia Bandettini W, Shanbhag SM, Druey KM, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson. 2012a;14:64.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG. A Robust methodology for in vivo T1 mapping. Magn Reson Med. 2010;64(4):1057ā€“67.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Donoho DL. An invitation to reproducible computational research. Biostatistics. 2010;11(3):385ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. TannĆŗs A, Alberto T, Michael G. Adiabatic pulses. NMR Biomed. 1997;10(8):423ā€“34.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  20. Gold GE, Eric H, Jeff S, Graham W, Jean B, Christopher B. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Am J Roentgenol. 2004;183(2):343ā€“51.

    ArticleĀ  Google ScholarĀ 

  21. Bevington PR, Keith Robinson D, Morris Blair J, John Mallinckrodt A, Susan M. Data reduction and error analysis for the physical sciences. Comput Phys. 1993;7(4):415.

    ArticleĀ  Google ScholarĀ 

  22. Lustig M, Michael L, David D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182ā€“95.

    ArticleĀ  Google ScholarĀ 

  23. WeingƤrtner S, AkƧakaya M, Roujol S, Basha T, Stehning C, Kissinger KV, et al. Free-breathing post-contrast three-dimensional T1 mapping: volumetric assessment of myocardial T1 values. Magn Reson Med. 2015;73(1):214ā€“22.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  24. Brix G, Schad LR, Deimling M, Lorenz WJ. Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging. 1990;8(4):351ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Look DC, Locker DR. Nuclear spin-lattice relaxation measurements by tone-burst modulation. Phys Rev Lett. 1968;20(21):1222.

    ArticleĀ  Google ScholarĀ 

  26. Deichmann R, Haase A. Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson. 1992;96(3):608ā€“12.

    CASĀ  Google ScholarĀ 

  27. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52(1):141ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  28. Piechnik SK, Ferreira VM, Dallā€™Armellina E, Cochlin LE, Andreas G, Stefan N, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12(1):69.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Kellman P, Peter K, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16(1):2.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Slavin GS. On the use of the ā€˜look-locker correctionā€™ for calculating T1 values from MOLLI. J Cardiovasc Magn Reson. 2014;16(Suppl 1):P55.

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med. 2014;71(6):2082ā€“95.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  32. Captur G, Gaby C, Peter G, Peter K, Heslinga FG, Katy K, et al. A T1 and ECV phantom for global T1 mapping quality assurance: the T1 mapping and ECV standardisation in CMR (T1MES) program. J Cardiovasc Magn Reson. 2016;18(Suppl 1):W14.

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Teixeira T, Hafyane T, Stikov N, Akdeniz C, Greiser A, Friedrich MG. Comparison of different cardiovascular magnetic resonance sequences for native myocardial T1 mapping at 3T. J Cardiovasc Magn Reson. 2016;18(1):65.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med. 2013;70(3):664ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Schelbert EB, Messroghli DR. State of the art: clinical applications of cardiac T1 mapping. Radiology. 2016;278(3):658ā€“76.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539ā€“42. http://circ.ahajournals.org/content/105/4/539.short.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  37. Avendi MR, Kheradvar A, Jafarkhani H. Fully automatic segmentation of heart chambers in cardiac MRI using deep learning. J Cardiovasc Magn Reson. 2016;18(Suppl 1):P351.

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Luo G, An R, Wang K, Dong S, Zhang H. A deep learning network for right ventricle segmentation in short: axis MRI. In 2016 Computing in Cardiology Conference (CinC). 2016. https://doi.org/10.22489/cinc.2016.139-406.

  39. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson. 2012b;14:63.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Keenan K, Katy K, Stupic KF, Boss MA, Russek SE. Standardized phantoms for quantitative cardiac MRI. J Cardiovasc Magn Reson. 2015;17(Suppl 1):W36.

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Stikov N, Boudreau M, Levesque IR, Tardif CL, Barral JK, Bruce Pike G. On the accuracy of T1 mapping: searching for common ground. Magn Reson Med. 2015;73(2):514ā€“22.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  42. Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson. 2013;15:56.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99(13):932ā€“7.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122(2):138ā€“44.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  45. White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 2013;6(9):955ā€“62.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors would like to thank Pascale Beliveau and Tarik Hafyane for their help with preparing the figures, and Reeve Ingle for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Stikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barral, J.K., Friedrich, M.G., Stikov, N. (2018). Fundamentals of Cardiac T1 Mapping. In: Yang, P. (eds) T1-Mapping in Myocardial Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-91110-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91110-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91109-0

  • Online ISBN: 978-3-319-91110-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics