Abstract
The clinical question of drug resistance in cancer, our initial motivation to study continuous models of adaptive cell population dynamics, leads naturally and more generally to consider the cancer disease itself from an evolutionary biology viewpoint, a consideration without which even the best targeted therapies will likely most often eventually fail. Among the challenging questions to mathematicians who tackle the task of understanding this disease and optimising its treatment are the representation of phenotypic heterogeneity of cancer cell populations and of their plasticity in response to anticancer drug insults. Such representation can be obtained using phenotype-structured models of healthy and cancer cell populations, and optimal control methods to optimise drug effects, with the perspective to implement them in the therapeutics of cancer, aiming at both avoiding the emergence of drug resistance in tumours and taking into account a constraint of limiting unwanted adverse effects to healthy tissues.
This is a preview of subscription content, access via your institution.
Buying options


References
S. Benzekry, Ph. Hahnfeldt, J. Theor. Biol. 335, 235 (2013)
F. Billy, J. Clairambault, Discr. Cont. Dyn. Syst. Ser. B 18, 865 (2013)
H.M. Byrne, D. Drasdo, J. Math. Biol. 58, 657 (2009)
C. Carrère, J. Theor. Biol. 413, 24 (2017)
R.H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L. Almeida, A. Escargueil, J. Clairambault, Cancer Res. 75, 930 (2015)
R.H. Chisholm, T. Lorenzi, J. Clairambault, Biochem. Biophys. Acta Gen. Subj. 1860, 2627 (2016)
R.H. Chisholm, T. Lorenzi, A. Lorz, Commun. Math. Sci. 14, 1181 (2016)
R.H. Chisholm, T. Lorenzi, L. Desvillettes, B.D. Hughes, Z. Angew. Math. Phys. 67:100, 1 (2016)
P.C.W. Davies, C.H. Lineweaver, Phys. Biol. 7, 1 (2011)
M. Gerlinger et al., N. Engl. J. Med. 336, 883 (2012)
R.J. Gillies, D. Verduzco, R.A. Gatenby, Nat. Rev. Cancer 12, 487 (2012)
A. Goldman, M. Kohandel, J. Clairambault, Curr. Stem Cell Rep. 3, 253 (2017)
A. Goldman, M. Kohandel, J. Clairambault, Curr. Stem Cell Rep. 3, 260 (2017)
M.M. Gottesman, T. Fojo, S.E. Bates. Nat. Rev. Cancer 2, 48 (2002)
S. Huang, Semin. Cancer Biol. 21, 183 (2011)
S. Huang, Cancer Metastasis Rev. 32, 423 (2013)
S. Huang, Y.P. Guo, G. May, T. Enver, Dev. Biol. 305, 695 (2007)
F. Jacob, Science 196, 1161 (1977)
U. Łedżewicz, H. Schättler, Discr. Cont. Dyn. Syst. Ser. B 6, 129 (2006)
U. Łedżewicz, H. Schättler, Mathematical Models of Tumor-Immune Dynamics (Springer, New York, 2013), p. 157
Y. Li, J. Laterra, Cancer Res. 72, 576 (2012)
A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame, Bull. Math. Biol. 77, 1 (2015)
S.E. Luria, M. Delbrück, Genetics 28, 491 (1943)
E. Pasquier, M. Kavallaris, N. André, Nat. Rev. Clin. Oncol. 7, 455 (2010)
B. Perthame, Transport Equations in Biology (Birkhäuser, Basel, 2007)
T. Philippi, J. Seger, Tends Ecol. Evol. 4, 41 (1989)
C. Pouchol, Modelling interactions between tumour cells and supporting adipocytes in breast cancer. https://hal.inria.fr/hal-01252122 (2015)
C. Pouchol, E. Trélat, arXiv 1702.06187. https://hal.inria.fr/hal-01618357 (2017)
C. Pouchol, J. Clairambault, A. Lorz, E. Trélat, arXiv 1612.04698 (2016); J. Maths Pures Appl. (2017, to appear)
S.M. Shaffer et al., Nature 546, 431 (2017)
S.V. Sharma et al., Cell 141, 69 (2010)
E. Trélat, Contrôle Optimal (Vuibert, Paris, 2005), 246 pp. Reviewed in Mathscinet MR2224013, 2007f:49001
B. Ujvari, B. Roche, F. Thomas (eds.), Ecology and Evolution of Cancer (Academic, London, 2017)
C.H. Waddington, The Strategy of Genes (George Allen & Unwin, London, 1957)
A. Wu et al., Proc. Natl. Acad. Sci. USA 112, 10467 (2015)
L. Zitvogel, L. Apetoh, F. Ghiringhelli, G. Kroemer, Nat. Rev. Immunol. 8, 59 (2008)
L. Zitvogel, O. Kepp, G. Kroemer, Nat. Rev. Clin. Oncol. 8, 151 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Almeida, L. et al. (2018). Why Is Evolution Important in Cancer and What Mathematics Should Be Used to Treat Cancer? Focus on Drug Resistance. In: Mondaini, R. (eds) Trends in Biomathematics: Modeling, Optimization and Computational Problems. Springer, Cham. https://doi.org/10.1007/978-3-319-91092-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-91092-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91091-8
Online ISBN: 978-3-319-91092-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)