Abstract
Genetic algorithms are different from most other metaheuristics because they exploit three key ideas: (1) the use of a population of solutions to guide search, (2) the use of crossover operators that recombine two or more solutions to generate new and potentially better solutions, and (3) the active management of diversity to sustain exploration. New ideas that are also introduced in this chapter include (1) the use of deterministic recombination operators that are capable of tunneling between local optima, and (2) the use of deterministic constant time move operators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
E. Alba, G. Lugue, Parallel Genetic Algorithms: Theory and Real World Applications, vol. 367 (Springer, Berlin, 2011)
Th. Bäck, C. Foussette, P. Krause, Contemporary Evolutionary Strategies (Springer, Berlin, 2013)
E. Boros, P.L. Hammer, Pseudo-boolean optimization. Discret. Appl. Math. 123(1), 155–225 (2002)
F. Chicano, D. Whitley, A. Sutton, Efficient identification of improving moves in a ball for pseudo-boolean problems, in Genetic and Evolutionary Computation Conference (GECCO) (ACM, New York, 2014), pp. 437–444
W. Cook, Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation (Princeton University Press, Princeton, 2011)
G.A. Croes, A method for solving traveling salesman problems. Oper. Res. 6(6), 791–812 (1958)
L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991)
K. Deb, C. Myburgh, Breaking the billion variable barrier in real world optimization, in Genetic and Evolutionary Computation Conference (GECCO) (ACM, New York, 2016), pp. 653–660
K. DeJong, An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Department of Computer and Communication Sciences, Ann Arbor, 1975
K. DeJong, Genetic algorithms are NOT function optimizers, in Foundations of Genetic Algorithms, ed. by D. Whitley, vol. 2 (Morgan Kaufmann, Burlington, 1993), pp. 5–17
T. El-Mihoub, A. Hopgood, L. Nolle, A. Battersby, Hybrid genetic algorithms: a review. Eng. Lett. 13(2), 124–137 (2006)
I.P. Gent, T. Walsh, Towards an understanding of hill-climbing procedures for SAT, in The National Conference on Artificial Intelligence (AAAI) (MIT Press, Cambridge, 1993), pp. 28–33
C. Glass, A. Prugel-Bennett, Genetic algorithm for graph coloring: exploration of Galinier and Hao’s algorithm. J. Comb. Optim. 7(3), 229–236 (2003)
D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, 1989)
D. Goldberg, Genetic algorithms and Walsh functions: part I, a gentle introduction. Complex Syst. 3, 129–152 (1989)
D. Goldberg, A note on Boltzmann tournament selection for genetic algorithms and population-oriented simulated annealing. Complex Syst. 4(4), 445–460 (1990)
D. Goldberg, K. Deb, A comparative analysis of selection schemes used in genetic algorithms, in Foundations of Genetic Algorithms, ed. by G. Rawlins, vol. 1 (Morgan Kaufmann, Burlington, 1991), pp. 69–93
D. Hains, D. Whitley, A. Howe, Improving Lin-Kernighan-Helsgaun with crossover on clustered instances of the TSP, in Parallel Problem Solving from Nature (PPSN) (Springer, Berlin, 2012), pp. 388–397
N. Hansen, The CMA evolution strategy: a comparing review, in Toward a New Evolutionary Computation (Springer, Berlin, 2006), pp. 75–102
N. Hansen, S. Kern, Evaluating the CMA evolution strategy on multimodal test functions, in Parallel Problem Solving from Nature (PPSN) (Springer, Berlin, 2004), pp. 282–291
R.B. Heckendorn, Embedded landscapes. Evol. Comput. 10(4), 345–369 (2002)
K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)
K. Helsgaun, General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1(2–3), 119–163 (2009)
K. Helsgaun, DIMACS TSP challenge results: current best tours found by LKH (2013). http://www.akira.ruc.dk/keld/research/LKH/DIMACSresults.html. November 24, 2013
G. Ho, P. Ji, H. Lau, A hybrid genetic algorithm for multi-depot vehicle routing problem. Eng. Appl. Artif. Intell. 21(4), 548–557 (2008)
J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975)
J. Holland, Adaptation in Natural and Artificial Systems, 2nd edn. (MIT Press, Cambridge, 1992)
H.H. Hoos, Th. Stützle, Stochastic Local Search: Foundations and Applications (Morgan Kaufman, Burlington, 2004)
S.A. Kauffman, Adaptation on rugged fitness landscapes, in Lectures in the Science of Complexity, ed. by D.L. Stein (Addison-Wesley, Boston, 1989), pp. 527–618
S.A. Kauffman, The Origins of Order (Oxford Press, Oxford, 1993)
L. Kotthoff, P. Kerschke, H. Hoos, H. Trautmann, Improving the state of the art in inexact TSP solving using per-instance algorithm selection, in International Conference on Learning and Intelligent Optimization (Springer, Berlin, 2015), pp. 202–217
S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21, 498–516 (1973)
Z. Lü, J.K. Hao, A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250 (2010)
M. Mitchell, S. Forrest, Fitness landscapes: royal road functions, in Handbook of Evolutionary Computation, ed. by T. Bäck, D. Fogel, Z. Michalewicx, vol. B2.7 (Institute of Physics Publishing, Bristol, 1997), pp. 1–25
A. Möbius, B. Freisleben, P. Merz, M. Schreiber, Combinatorial optimization by iterative partial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)
P. Moscato, C. Cotta, A gentle introduction to memetic algorithms, in Handbook of Metaheuristics, ed. by F. Glover, G. Kochenberger (Springer, Boston, 2003), pp. 105–144
Y. Nagata, S. Kobayashi, Edge assembly crossover: a high-power genetic algorithm for the traveling salesman problem, in International Conference on Genetic Algorithms (ICGA), ed. by T. Bäck (Morgan Kaufmann, Burlington, 1997), pp. 450–457
Y. Nagata, S. Kobayashi, A powerful genetic algorithms using edge assemble crossover the traveling salesman problem. INFORMS J. Comput. 25(2), 346–363 (2013)
Y. Nagata, D. Soler, A new genetic algorithm for the asymmetric TSP. Expert Syst. Appl. 39(10), 8947–8953 (2012)
A. Nix, M. Vose, Modelling genetic algorithms with Markov chains. Ann. Math. Artif. Intell. 5, 79–88 (1992)
S. Rana, R. Heckendorn, D. Whitley, A tractable Walsh analysis of SAT and its implications for genetic algorithms, in The National Conference on Artificial Intelligence (AAAI) (MIT Press, Cambridge, 1998), pp. 392–397
C. Rego, D. Gamboa, F. Glover, C. Osterman, Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 427–441 (2011)
C.M. Reidys, P.F. Stadler, Combinatorial landscapes. SIAM Rev. 44, 3–54 (2002)
B. Selman, H. Levesque, D. Mitchell, A new method for solving hard satisfiability problems, in The National Conference on Artificial Intelligence (AAAI), San Jose (1992), pp. 44–446
A. Sokolov, D. Whitley, Unbiased tournament selection, in Genetic and Evolutionary Computation Conference (GECCO) (ACM, New York, 2005), pp. 1131–1138
A. Sokolov, D. Whitley, A note on the variance of rank-based selection strategies for genetic algorithms and genetic programming. Genet. Program Evolvable Mach. 8(3), 221–237 (2007)
K. Sorensen, Metaheuristics: the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)
A.M. Sutton, A. Howe, D. Whitley, A theoretical analysis of the k-satisfiability search space, in Workshop on Engineering Stochastic Local Search Algorithms (SLS) (2009), pp. 46–60
G. Syswerda, Reproduction in generational and steady state genetic algorithms, in Foundations of Genetic Algorithms, ed. by G. Rawlins, vol. 1 (Morgan Kaufmann, Burlington, 1991), pp. 94–101
R. Tinós, D. Whitley, G. Ochoa, Generalized asymmetric partition crossover (GAPX) for the asymmetric TSP, in Genetic and Evolutionary Computation Conference (GECCO) (ACM, New York, 2014), pp. 501–508
R. Tinós, D. Whitley, F. Chicano, Partition crossover for pseudo-Boolean optimization, in Foundations of Genetic Algorithms (FOGA-15) (2015), pp. 137–149
N. Veerapen, G. Ochoa, D. Whitley, Tunneling crossover for the asymmetric TSP, in Parallel Problem Solving from Nature (PPSN). Lecture Notes in Computer Science (Springer, Cham, 2016), pp. 994–1004
T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi, W. Rei, A hybrid genetic algorithm for multi-depot and periodic vehicle routing problems. Oper. Res. 60(3), 611–624 (2012)
M. Vose, Modeling simple genetic algorithms, in Foundations of Genetic Algorithms (FOGA 2), ed. by D. Whitley (Morgan Kaufmann, Burlington, 1993), pp. 63–73
M. Vose, The Simple Genetic Algorithm (MIT Press, Cambridge, 1999)
J. Watson, C. Ross, V. Eisele, J. Denton, J. Bins, C. Guerra, D. Whitley, The traveling Salesrep problem, edge assembly crossover, and 2-opt, in Parallel Problem Solving from Nature (PPSN) (Springer, Berlin, 1998), pp. 823–832
D. Whitley, An executable model of the simple genetic algorithm, in Foundations of Genetic Algorithms (FOGA 2) ed. by D. Whitley (Morgan Kaufmann, Burlington, 1993), pp. 45–62
D. Whitley, A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994)
D. Whitley, A review of models for simple and cellular genetic algorithms, in Applications of Modern Heuristic Search, ed. by V.J. Rayward-Smith, Chap. 4 (Alfred Waller Limited, Oxon, 1995), pp. 55–67
D. Whitley, W. Chen, Constant time steepest descent local search with lookahead for NK-landscapes and MAX-kSAT, in Genetic and Evolutionary Computation Conference (GECCO) (ACM, New York, 2012), pp. 1357–1364
D. Whitley, J. Kauth, GENITOR: a different genetic algorithm, in Proceedings of the Rocky Mountain Conference on Artificial Intelligence (1988), pp. 118–130
D. Whitley, A. Sutton, Genetic algorithms: a survey of models and methods, in Handbook of Natural Computation (Springer, Berlin, 2013), pp. 637–671
D. Whitley, S. Rana, R. Heckendorn, The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol. 7(1), 33–47 (1999)
D. Whitley, A. Sutton, A.E. Howe, L. Barbulescu, Resource scheduling with permutation based representations: three applications, in Evolutionary Computation in Practice, ed. by T. Yu, L. Davis, C. Baydar, R. Roy. Studies in Computational Intelligence, vol. 88 (Springer, Berlin, 2008), pp. 219–243
D. Whitley, D. Hains, A. Howe, A hybrid genetic algorithm for the traveling salesman problem using generalized partition crossover, in Parallel Problem Solving from Nature (PPSN) (Springer, Berlin, 2010), pp. 566–575
D. Whitley, A. Howe, D. Hains, Greedy or not? Best improving versus first improving stochastic local search for MAXSAT, in The National Conference on Artificial Intelligence (AAAI) (2013), pp. 940–946
D. Whitley, F. Chicano, B. Goldman, Gray box optimization for Mk landscapes (NK landscapes and MAX-kSAT). Evol. Comput. 24, 491–519 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Whitley, D. (2019). Next Generation Genetic Algorithms: A User’s Guide and Tutorial. In: Gendreau, M., Potvin, JY. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-91086-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-91086-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91085-7
Online ISBN: 978-3-319-91086-4
eBook Packages: Business and ManagementBusiness and Management (R0)