Advertisement

Swarm Intelligence

  • Xiaodong LiEmail author
  • Maurice Clerc
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 272)

Abstract

Swarm Intelligence (SI) is an Artificial Intelligence (AI) discipline that studies the collective behaviours of artificial and natural systems such as those of insects or animals. SI is seen as a new concept of AI and is becoming increasingly accepted in the literature. SI techniques are typically inspired by natural phenomena, and they have exhibited remarkable capabilities in solving problems that are often perceived to be challenging to conventional computational techniques. Although an SI system lacks a centralized control, the system at the swarm (or population) level reveals remarkable complex and self-organizing behaviours, often as the result of local interactions among individuals in the swarm as well as individuals with the environment, based on very simple interaction rules.

Notes

Acknowledgements

The authors would like to thank Prof. Jean-Yves Potvin for his valuable feedback, which has substantially improved the quality of this chapter.

References

  1. 1.
    G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in Robots and Biological Systems: Towards a New Bionics? ed. by P. Dario, G. Sandini, P. Aebischer (Springer, Berlin, 1993), pp. 703–712Google Scholar
  2. 2.
    S. Bird, X. Li, Adaptively choosing niching parameters in a PSO, in Proceedings of Genetic and Evolutionary Computation Conference, July 2006, ed. by M. Cattolico (ACM Press, New York, 2006), pp. 3–10Google Scholar
  3. 3.
    T.M. Blackwell, P. Bentley, Dynamic search with charged swarms, in Proceedings of Workshop on Evolutionary Algorithms Dynamic Optimization Problems (2002), pp. 19–26Google Scholar
  4. 4.
    T.M. Blackwell, P.J. Bentley, Improvised music with swarms, in Proceedings of Congress on Evolutionary Computation, ed. by D.B. Fogel, M.A. El-Sharkawi, X. Yao, G. Greenwood, H. Iba, P. Marrow, M. Shackleton (IEEE Press, Piscataway, 2002), pp. 1462–1467Google Scholar
  5. 5.
    T.M. Blackwell, J. Branke, Multi-swarm optimization in dynamic environments, in Applications of Evolutionary Computing, LNCS 3005 (Springer, Berlin, 2004), pp. 489–500Google Scholar
  6. 6.
    T.M. Blackwell, J. Branke, Multi-swarms, exclusion and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)CrossRefGoogle Scholar
  7. 7.
    T.M. Blackwell, J. Branke, X. Li, Particle swarms for dynamic optimization problems, in Swarm Intelligence: Introduction and Applications, ed. by C. Blum, D.D. Merkle (Springer, Berlin, 2008), pp. 193–217CrossRefGoogle Scholar
  8. 8.
    C. Blum, X. Li, Swarm intelligence in optimization, in Swarm Intelligence: Introduction and Applications, ed. by C. Blum, D. Merkle (Springer, Berlin, 2008), pp. 43–85CrossRefGoogle Scholar
  9. 9.
    C. Blum, D. Merkle, Swarm Intelligence: Introduction and Applications. Natural Computing Series (Springer, Berlin, 2008)CrossRefGoogle Scholar
  10. 10.
    E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)Google Scholar
  11. 11.
    M.R. Bonyadi, Z. Michalewicz, Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans. Evol. Comput. 20(5), 814–819 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Branke, Evolutionary Optimization in Dynamic Environments (Kluwer Academic, Norwell, 2002)CrossRefGoogle Scholar
  13. 13.
    D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in IEEE Swarm Intelligence Symposium (June 2007), pp. 120–127Google Scholar
  14. 14.
    R. Brits, A.P. Engelbrecht, F. van den Bergh, A niching particle swarm optimizer, in Proceedings of 4th Asia-Pacific Conference on Simulated Evolution and Learning (2002), pp. 692–696Google Scholar
  15. 15.
    A. Carlisle, G. Dozier, Adapting particle swarm optimization to dynamic environments, in Proceedings of International Conference on Artificial Intelligence, Las Vegas, NV (2000), pp. 429–434Google Scholar
  16. 16.
    A. Carlisle, G. Dozier, Tracking changing extrema with adaptive particle swarm optimizer, in Proceedings of World Automation Congress, Orlando, FL (2002), pp. 265–270Google Scholar
  17. 17.
    R. Carrese, X. Li, Preference-based multiobjective particle swarm optimization for airfoil design, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin, 2015), pp. 1311–1331CrossRefGoogle Scholar
  18. 18.
    R. Carrese, A. Sobester, H. Winarto, X. Li, Swarm heuristic for identifying preferred solutions in surrogate-based multi-objective engineering design. Am. Inst. Aeronaut. Astronaut. J. 49(7), 1437–1449 (2011)CrossRefGoogle Scholar
  19. 19.
    C.W. Cleghorn, Particle Swarm Optimization: Empirical and Theoretical Stability Analysis, Ph.D. thesis, University of Pretoria, 2017Google Scholar
  20. 20.
    M. Clerc, Standard particle swarm optimisation. 15 pages (2012)Google Scholar
  21. 21.
    M. Clerc, Discrete particle swarm optimization, illustrated by the traveling salesman problem, in New Optimization Techniques in Engineering (Springer, Heidelberg, 2004), pp. 219–239Google Scholar
  22. 22.
    M. Clerc, Confinements and biases in particle swarm optimisation, Technical report, Open archive HAL (2006). http://hal.archives-ouvertes.fr/, ref. hal-00122799
  23. 23.
    M. Clerc, Particle Swarm Optimization (ISTE Ltd, Washington, DC, 2006)CrossRefGoogle Scholar
  24. 24.
    M. Clerc, Guided Randomness in Optimization (ISTE (International Scientific and Technical Encyclopedia)/Wiley, Washington, DC/Hoboken, 2015)Google Scholar
  25. 25.
    M. Clerc, J. Kennedy, The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  26. 26.
    C.A.C. Coello, M. Salazar Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization, in Proceedings of Congress on Evolutionary Computation, Piscataway, NJ, May 2002, vol. 2, pp. 1051–1056Google Scholar
  27. 27.
    K.A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. thesis, University of Michigan, 1975Google Scholar
  28. 28.
    K. Deb, A. Pratap, S. Agrawal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  29. 29.
    M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  30. 30.
    R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in Proceedings of IEEE International Conference Evolutionary Computation (2000), pp. 84–88Google Scholar
  31. 31.
    R.C. Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms, in Proceedings of Congress on Evolutionary Computation (IEEE Press, 2001), pp. 94–100Google Scholar
  32. 32.
    J.E. Fieldsend, S. Singh, A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence, in Proceedings of U.K. Workshop on Computational Intelligence, Birmingham, September 2002, pp. 37–44Google Scholar
  33. 33.
    D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function optimization, in Proceedings of Second International Conference on Genetic Algorithms, ed. by J.J. Grefenstette, pp. 41–49 (1987)Google Scholar
  34. 34.
    E.F.G. Goldbarg, G.R. De Souza, M.C. Goldbarg, Particle swarm for the traveling salesman problem, in Evolutionary Computation in Combinatorial Optimization: Proceedings of the 6th European Conference, EvoCOP 2006, ed. by J. Gottlieb, G. Raidl, R. Günther. LNCS, vol. 3906 (Springer, Berlin, 2006), pp. 99–110Google Scholar
  35. 35.
    R. Groß, M. Bonani, F. Mondada, M. Dorigo, Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22(6), 1115–1130 (2006)CrossRefGoogle Scholar
  36. 36.
    G.R. Harik, Finding multimodal solutions using restricted tournament selection, in Proceedings of Sixth International Conference on Genetic Algorithms, ed. by L. Eshelman (Morgan Kaufmann, San Francisco, 1995), pp. 24–31Google Scholar
  37. 37.
    S. Helwig, R. Wanka, Particle swarm optimization in high-dimensional bounded search spaces, in Proceedings of IEEE Swarm Intelligence Symposium, April 2007 (IEEE Press, Honolulu, 2007), pp. 198–205CrossRefGoogle Scholar
  38. 38.
    N. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation, in Proceedings of IEEE Swarm Intelligence Symposium (2003), pp. 72–79Google Scholar
  39. 39.
    X. Hu, R.C. Eberhart, Adaptive particle swarm optimisation: detection and response to dynamic systems, in Proceedings of Congress on Evolutionary Computation (2002), pp. 1666–1670Google Scholar
  40. 40.
    S. Janson, M. Middendorf, A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst. Man Cybern. B 35(6), 1272–1282 (2005)CrossRefGoogle Scholar
  41. 41.
    J. Kennedy, The behaviour of particle, in Proceedings of 7th Annual Conference Evolutionary Programming, San Diego, CA (1998), pp. 581–589Google Scholar
  42. 42.
    J. Kennedy, Bare bones particle swarms, in Proceedings of IEEE Swarm Intelligence Symposium, Indianapolis, IN (2003), pp. 80–87Google Scholar
  43. 43.
    J. Kennedy, In search of the essential particle swarm, in Proceedings of IEEE Congress on Evolutionary Computation (IEEE Press, 2006), pp. 6158–6165Google Scholar
  44. 44.
    J. Kennedy, Swarm intelligence, in Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies, ed. by A.Y. Zomaya (Springer, Boston, 2006), pp. 187–219CrossRefGoogle Scholar
  45. 45.
    J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, vol. 4 (IEEE Press, Piscataway, 1995), pp. 1942–1948CrossRefGoogle Scholar
  46. 46.
    J. Kennedy, R.C. Eberhart, Y. Shi, Swarm Intelligence (Morgan Kaufmann, San Francisco, 2001)Google Scholar
  47. 47.
    X. Li, A non-dominated sorting particle swarm optimizer for multiobjective optimization, in Proceedings of Genetic and Evolutionary Computation Conference, Part I, ed. by Erick Cantú-Paz et al. LNCS, vol. 2723 (Springer, Berlin, 2003), pp. 37–48Google Scholar
  48. 48.
    X. Li, Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization, in Proceedings of Genetic and Evolutionary Computation Conference, ed. by K. Deb. LNCS, vol. 3102 (2004), pp. 105–116Google Scholar
  49. 49.
    X. Li, Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)CrossRefGoogle Scholar
  50. 50.
    X. Li, Developing niching algorithms in particle swarm optimization, in Handbook of Swarm Intelligence ed. by B. Panigrahi, Y. Shi, M.-H. Lim. Adaptation, Learning, and Optimization, vol. 8 (Springer, Berlin, 2011), pp. 67–88Google Scholar
  51. 51.
    X. Li, K.H. Dam, Comparing particle swarms for tracking extrema in dynamic environments, in Proceedings of Congress on Evolutionary Computation (2003), pp. 1772–1779Google Scholar
  52. 52.
    J.P. Li, M.E. Balazs, G.T. Parks, P.J. Clarkson, A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)CrossRefGoogle Scholar
  53. 53.
    X. Li, J. Branke, T. Blackwell, Particle swarm with speciation and adaptation in a dynamic environment, in Proceedings of Genetic and Evolutionary Computation Conference, ed. by M. Cattolico (ACM Press, New York, 2006), pp. 51–58Google Scholar
  54. 54.
    X. Li, A. Engelbrecht, M.G. Epitropakis, Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization, Technical report, Evolutionary Computation and Machine Learning Group, RMIT University, 2013Google Scholar
  55. 55.
    J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)CrossRefGoogle Scholar
  56. 56.
    M. Lovbjerg, T. Krink, Extending particle swarm optimizers with self-organized criticality, in Proceedings of Congress on Evolutionary Computation (IEEE Press, 2002), pp. 1588–1593Google Scholar
  57. 57.
    A. Mah, S.I. Hossain, S. Akter, A comparative study of prominent particle swarm optimization based methods to solve traveling salesman problem. Int. J. Swarm Intell. Evol. Comput. 5(3), 1–10 (2016)Google Scholar
  58. 58.
    D. Martens, B. Baesens, T. Fawcett, Editorial survey: swarm intelligence for data mining. Mach. Learn. 82(1), 1–42 (2011)CrossRefGoogle Scholar
  59. 59.
    R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)CrossRefGoogle Scholar
  60. 60.
    J. Moore, R. Chapman, Application of Particle Swarm to Multiobjective Optimization (Department of Computer Science and Software Engineering, Auburn University, 1999)Google Scholar
  61. 61.
    E. Ozcan, C.K. Mohan, Analysis of a simple particle swarm optimization system, in Intelligent Engineering Systems through Artificial Neural Networks (1998), pp. 253–258Google Scholar
  62. 62.
    R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)CrossRefGoogle Scholar
  63. 63.
    D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)CrossRefGoogle Scholar
  64. 64.
    K. Parsopoulos, M. Vrahatis, Modification of the particle swarm optimizer for locating all the global minima, in Artificial Neural Networks and Genetic Algorithms, ed. by V. Kurkova, N. Steele, R. Neruda, M. Karny (Springer, Berlin, 2001), pp. 324–327CrossRefGoogle Scholar
  65. 65.
    K. Parsopoulos, M. Vrahatis, Particle swarm optimization method in multiobjective problems, in Proceedings of ACM Symposium on Applied Computing, Madrid (ACM Press, New York, 2002), pp. 603–607Google Scholar
  66. 66.
    A. Pétrowski, A clearing procedure as a niching method for genetic algorithms, in Proceedings of 3rd IEEE International Conference on Evolutionary Computation (1996), pp. 798–803Google Scholar
  67. 67.
    R. Poli, Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans. Evol. Comput. 13(4), 712–721 (2009)CrossRefGoogle Scholar
  68. 68.
    B.Y. Qu, P.N. Suganthan, S. Das, A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)CrossRefGoogle Scholar
  69. 69.
    M. Reyes-Sierra, C.A.C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)Google Scholar
  70. 70.
    T. Richer, T. Blackwell, The L\(\acute{e}\) vy particle swarm, in Proceedings of Congress on Evolutionary Computation (2006), pp. 808– 815Google Scholar
  71. 71.
    J. Riget, J. Vesterstroem, A diversity-guided particle swarm optimizer - the ARPSO, Technical Report 2002-02, Department of Computer Science, University of Aarhus, 2002Google Scholar
  72. 72.
    E. Şahin, Swarm robotics: from sources of inspiration to domains of application, in Swarm Robotics: SAB 2004 International Workshop (Revised Selected Papers), ed. by E. Şahin, W.M. Spears (Springer, Berlin, 2005), pp. 10–20CrossRefGoogle Scholar
  73. 73.
    E. Şahin, S. Girgin, L. Bayindir, A.E. Turgut, Swarm robotics, in Swarm Intelligence: Introduction and Applications, ed. by C. Blum, D. Merkle (Springer, Berlin, 2008), pp. 87–100CrossRefGoogle Scholar
  74. 74.
    R. Salomon, Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions - a survey of some theoretical and practical aspects of genetic algorithms. Biosystems 39(3), 263–278 (1996)CrossRefGoogle Scholar
  75. 75.
    W.M. Spears, D.T. Green, D.F. Spears, Biases in particle swarm optimization. Int. J. Swarm. Intell. Res. 1(2), 34–57 (2010)CrossRefGoogle Scholar
  76. 76.
    P.N. Suganthan, Particle swarm optimiser with neighbourhood operator, in Congress on Evolutionary Computation (CEC 1999), Washington (1999), pp. 1958–1962Google Scholar
  77. 77.
    F. van den Bergh, Analysis of Particle Swarm Optimizers, Ph.D. thesis, Department of Computer Science, University of Pretoria, Pretoria, 2002Google Scholar
  78. 78.
    F. van den Bergh, A.P. Engelbrecht, A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)CrossRefGoogle Scholar
  79. 79.
    F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories. Inform. Sci. 176, 937–971 (2006)CrossRefGoogle Scholar
  80. 80.
    K. Veeramachaneni, T. Peram, C. Mohan, L. Osadciw, Optimization using particle swarm with near neighbor interactions, in Proceedings of Genetic and Evolutionary Computation Conference, Chicago, IL (2003), pp. 110 – 121Google Scholar
  81. 81.
    M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, A. Elmaghraby, An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 289–301 (2004)CrossRefGoogle Scholar
  82. 82.
    U.K. Wickramasinghe, X. Li, Using a distance metric to guide PSO algorithms for many-objective optimization, in Proceedings of Genetic and Evolutionary Computation Conference (ACM Press, New York, 2009), pp. 667–674Google Scholar
  83. 83.
    H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2001)CrossRefGoogle Scholar
  84. 84.
    M. Zambrano-Bigiarini, M. Clerc, R. Rojas, Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements, in Proceedings of Congress on Evolutionary Computation (2013), pp. 2337–2344Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Science (Computer Science)RMIT UniversityMelbourneAustralia
  2. 2.Independent ConsultantGroisyFrance

Personalised recommendations