Advertisement

Liquid Injection Molding Process in the Manufacturing of Fibrous Composite Materials: Theory, Advanced Modeling and Engineering Applications

  • M. J. Nascimento Santos
  • João M. P. Q. Delgado
  • Antonio Gilson Barbosa de LimaEmail author
  • I. R. Oliveira
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 93)

Abstract

The purpose of this chapter is to provide theoretical and experimental information about polymer composite manufacturing reinforced with fiber by using Resin Transfer Molding process. It is a process, in which the liquid resin is injected in a closed mold with a fibrous preform inserted. This physical process is similar to the fluid flow in porous media, thus, the process control becomes essential. Here, diverse topics related to this theme, such as, theory, experiments, advanced macroscopic mathematical modeling, in which is included the effect of the resin sorption by fibers, exact solution of the governing equations, and technological applications are presented and well discussed. The study clarifies the importance of the resin sorption effect on the hydrodynamic of the resin flow inside the mold cavity and fibrous preform.

Keywords

RTM Theoretical Experimental Polymer composite 

Notes

Acknowledgements

The authors thank to CNPq, FINEP and CAPES (Brazilian Research agencies) for financial support, and to the authors referred in this text that contributed for improvement of this work.

References

  1. 1.
    Hsu, C.-T.: Dynamic modeling of convective heat transfer in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 39–80. Taylor & Francis, Boca Raton, USA (2005)Google Scholar
  2. 2.
    Diebels, S.: Micropolar mixture models on the basis of the theory of porous media. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 121–145. Springer-Verlag, Heidelberg, Germany (2010)Google Scholar
  3. 3.
    Kowalski, S.J.: Mechanical aspect on drying of wet porous media. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 169–197. Springer-Verlag, Heidelberg, Germany (2010)Google Scholar
  4. 4.
    Larsson, R., Larsson, J., Runesson, K.: Theory and numerics of localization in a fluid-saturated elasto-plastic porous medium. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 315–340. Springer-Verlag, Heidelberg, Germany (2010)zbMATHGoogle Scholar
  5. 5.
    Freij-Ayoub, R., Mühlhaus, H.-B., Probst, L.: Multicomponent Reactive Transport Modelling: Applications to One Body Genesis and Environmental Hazards. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 416–435. Springer-Verlag, Heidelberg, Germany (2010)Google Scholar
  6. 6.
    Khilar, K.C., Fogler, H.S.: Migrations of Fines in Porous Media. Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)CrossRefGoogle Scholar
  7. 7.
    Spanos, T.J.T.: The Thermophysics of Porous Media. Chapman & Hall/CRC, Boca Raton, USA (2002)zbMATHGoogle Scholar
  8. 8.
    Viera, M.A.D., Sahay, P.N., Coronado, M., Tapia, A.O.: Mathematical and Numerical Modeling in Porous Media: Applications in Geosciences. CRC Press, Boca Raton, USA (2012)zbMATHGoogle Scholar
  9. 9.
    Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media. Pergamon, Oxford, UK (1998)zbMATHGoogle Scholar
  10. 10.
    Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media II. Pergamon, Amsterdam, The Netherlands (2002)zbMATHGoogle Scholar
  11. 11.
    Ingham, D.B., Pop, I.: Transport Phenomena in Porous Media III. Elsevier Ltda, Oxford, UK (2005)zbMATHGoogle Scholar
  12. 12.
    Vadász, P.: Emerging Topics in Heat and Mass Transfer in Porous Media: From Bioengineering and Microeletronics to Nanotechnology. Springer, New York, USA (2008)CrossRefGoogle Scholar
  13. 13.
    Delgado, J.M.P.Q.: Industrial and Technological Applications of Transport in Porous Materials. Springer-Verlag, Berlin, Germany (2013)CrossRefGoogle Scholar
  14. 14.
    Delgado, J.M.P.Q., Lima, A.G.B., Silva, M.V.: Numerical Analysis of Heat and Mass Transfer in Porous Media. Springer-Verlag, Berlin, Germany (2012)Google Scholar
  15. 15.
    Viskanta, R.: Combustion and heat transfer in inert porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 607–644. Taylor & Francis, Boca Raton, USA (2005)Google Scholar
  16. 16.
    Harris, S.D., Ingham, D.B.: Parameter identification within a porous medium using genetic algorithims. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 687–742. Taylor & Francis, Boca Raton, USA (2005)Google Scholar
  17. 17.
    Lancellotta, R.: Coupling between the evolution of a deformable porous medium and the motion of fluids in the connected porosity. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 199–225. Springer-Verlag, Heidelberg, Germany (2010)zbMATHGoogle Scholar
  18. 18.
    Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer-Verlag, Heidelberg, Germany (2010)Google Scholar
  19. 19.
    Liu, S.L., Masliyah, J.H.: Dispersion in porous media. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 81–140. Taylor & Francis, Boca Raton, USA (2005)Google Scholar
  20. 20.
    McKibbin, R.: Modeling heat and mass transport processes in geothermal systems. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 545–571. Taylor & Francis, Boca Raton, USA (2005)Google Scholar
  21. 21.
    Nield, D., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York, USA (2006)zbMATHGoogle Scholar
  22. 22.
    Bear, J.: Dynamics of Fluid in Porous Media. Dover Publications Inc., New York, USA (1972)zbMATHGoogle Scholar
  23. 23.
    Allen III, M.B., Behie, G.A., Trangestein, J.A.: Multiphase Flow in Porous Media. Springer-Verlag, Berlin, Germany (1988)CrossRefGoogle Scholar
  24. 24.
    Agarwal, B., Broutmann, L.J., Chandrashekha, K.: Analysis and Performance of Fiber Composites. Wiley, New Jersey, USA (2006)Google Scholar
  25. 25.
    Carvalho, L.H., Canedo, E.L., Farias Neto, S.R., Lima, A.G.B., Silva, C.J.: Moisture transport process in vegetable fiber composites: theory and analysis for technological applications. In: Delgado, J.M.P.Q. (ed.) Industrial and Technologica Applications of Transport in Porous Materials, pp. 37–62. Springer-Verlag, Berlin, Germany (2013)Google Scholar
  26. 26.
    Gutowski, T.G.: A brief introduction to composite materials and manufacturing processes. In: Gutowski, T.G. (ed.) Advanced Composites Manufacturing, pp. 5–41. Wiley, New York, USA (1997)Google Scholar
  27. 27.
    Advani, S.G., Hsiao, K.T.: Transport phenomena in liquid composites molding processes and their roles in process control and optimization. In: Vafai, K. (ed.) Handbook of Porous Media, 2nd edn, pp. 573–606. Taylor & Francis, Boca Raton, USA (2005)Google Scholar
  28. 28.
    Bunsell, A.R., Renard, J.: Fundamentals of Fibre Reinforced Composite Materials. IOP Publishing, London, UK (2005)CrossRefGoogle Scholar
  29. 29.
    Beukers, A., Bersee, H., Koussios, S.: Future aircraft structures: From metal to composite structures. In: Nicolais, L., Meo, M., Milella, E. (eds.) Composite Materials: A vision for the Future, pp. 1–50. Springer-Verlag, London, UK (2011)Google Scholar
  30. 30.
    Halpin, J.C.: Opportunities for polymeric-based composite applications for transport aircraft. In: Nicolais, L., Meo, M., Milella, E. (eds.) Composite Materials: A vision for the future, pp. 51–67. Springer-Verlag, London, UK (2011)CrossRefGoogle Scholar
  31. 31.
    Shenoi, R.A., Dulieu-Barton, J.M., Quinn, S., Blake, J.I.R., Boyd, S.W.: Composite materials for marine applications: key challengers for the future. In: Nicolais, L., Meo, M., Milella, E. (eds.) Composite Materials: A vision for the Future, pp. 69–89. Springer-Verlag, London, UK (2011)CrossRefGoogle Scholar
  32. 32.
    Mazumdar, S.K.: Composites Manufacturing: Materials, Product and Process Engineering. CRC Press, Boca Raton, USA (2002)Google Scholar
  33. 33.
    Laurenzi, S., Marchetti, M.: Advanced composite materials by resin transfer molding for aerospace applications, Chapter 10. In: Ning, H. (ed.) Composites and Their Properties, pp. 197–226. InTech, Rijeka, Croatia (2012)Google Scholar
  34. 34.
    McKibbin, R.: Mathematical models for heat and mass transport in geothermal systems. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media, pp. 131–154. Oxford, UK (1998)CrossRefGoogle Scholar
  35. 35.
    Wang, C.Y.: Modeling multiphase flow and transport in porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media, pp. 383–410. Oxford, UK (1998)CrossRefGoogle Scholar
  36. 36.
    Bories, S., Prat, M.: Isothermal nucleation and bubble growth in porous media at low supersaturations. In: Inhgam, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media II, pp. 276–315. Pergamon, Amsterdam, The Netherlands (2002)CrossRefGoogle Scholar
  37. 37.
    Baytaş, A.C., Baytaş, A.F.: Entropy generation in porous media. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media III, pp. 201–226. Elsevier Ltda, Oxford, UK (2005)CrossRefGoogle Scholar
  38. 38.
    Ma, L., Ingham, D.B., Pourkashanian, M.C.: Application of fluid flows through porous media in fuel cells. In: Ingham, D.B., Pop, I. (eds.) Transport Phenomena in Porous Media III, pp. 418–440. Elsevier Ltda, Oxford, UK (2005)CrossRefGoogle Scholar
  39. 39.
    Kardos, J.L.: The processing science of reactive polymer composites. In: Gutowski, T.G. (ed.) Advanced Composites Manufacturing, pp. 43–80. Wiley, New York, USA (1997)Google Scholar
  40. 40.
    Lee, W.I., Loss, A.C., Springer, G.S.: Heat of reaction, degree of cure and viscosity of Hercules 3501-6 resin. J. Compos. Mater. 16(2), 510–520 (1982)CrossRefGoogle Scholar
  41. 41.
    Oliveira, I.R.: Infiltration of loaded fluids in porous media via rtm process: theoretical and experimental analyses. Doctorate thesis, Process in Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2014)Google Scholar
  42. 42.
    Oliveira, I.R., Amico, S.C., de Lima, A.G.B., de Lima, W.M.P.B.: Application of calcium carbonate in resin transfer molding process: an experimental investigation. Materialwiss. Werkstofftech. 46, 24–32 (2015)CrossRefGoogle Scholar
  43. 43.
    Luz, F.F., Amico, S.C., Souza, J.A., Barbosa, E.S., Lima, A.G.B.: Resin transfer molding process: fundamentals, numerical computation and experiments. In: Delgado, J.M.P.Q., Barbosa de Lima, A.G., Vázquez da Silva, M. (Org.) Numerical Analysis of Heat and Mass Transfer in Porous Media. Series: Advanced Structured Materials, 1st ed., vol. 27, pp. 121–151. Springer-Verlag, Heidelberg, Germany (2012)Google Scholar
  44. 44.
    Santos, M.J.N., Barbosa de Lima, A.G.: Manufacturing fiber-reinforced polymer composite using rtm process: an analytical approach. Defect Diffus. Forum 380, 60–65 (2017)CrossRefGoogle Scholar
  45. 45.
    Ehlers, W., Markert, B., Klar, O.: Biphasic description of viscoelastic foams by use of anextended Ogden-type formulation. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 275–294. Springer-Verlag, Heidelberg, Germany (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • M. J. Nascimento Santos
    • 1
  • João M. P. Q. Delgado
    • 2
  • Antonio Gilson Barbosa de Lima
    • 1
    Email author
  • I. R. Oliveira
    • 1
  1. 1.Department of Mechanical EngineeringFederal University of Campina GrandeCampina Grande, PBBrazil
  2. 2.CONSTRUCT-LFC, Faculty of Engineering (FEUP)University of PortoPortoPortugal

Personalised recommendations