Skip to main content

Chemical Digestion, Absorption, and Transport

  • 2242 Accesses

Abstract

Chemical digestion involves the catalytic processing of food in the gastrointestinal (GI) tract by digestive enzymes, aided by co-secreted substances, required to break down the food substances into simpler molecules for absorption. This process is necessary for transport and subsequent metabolic reactions that access the macroergic bonds in food molecules. The catalytic process of digestion starts from the mouth for lipids and carbohydrates. For proteins, the catalytic process begins from the stomach. The sources of the enzymes and co-secreted factors are the glands lining the GI tract, namely salivary, submucosal, gastric, and intestinal glands. This chapter provides up-to-date information on the course of discovery as well as the discoverers of major digestive enzymes in humans. The functions and mechanisms of action of all major digestive enzymes discovered up to the twenty-first century are discussed herein. This chapter is a useful reference source on the history and discovery of major digestive enzymes and the mechanisms of regulation of their functions. The clinical importance of the enzymes is systematically provided at strategic points of the discussion. This chapter provides cellular and molecular mechanisms on the absorption and transport of nutrients, ions, dietary elements, vitamins, toxic metals, and pharmacological drugs in the gut. Pathological implications of some of the components of GI metabolism are strategically outlined.

Keywords

  • Chemical processing of food
  • Chemical digestion
  • Catalysis
  • Carbohydrate
  • Lipid
  • Fatty acids
  • Protein
  • Amino acids
  • Protease
  • Pepsin
  • Trypsin
  • Chymotrypsin
  • Duodenase
  • Enterokinase
  • Carbohydrase
  • Amylase
  • Lipase
  • Lingual lipase
  • Gastric lipase
  • Pancreatic lipase
  • Colipase
  • Alpha-glucosidases
  • Maltase-glucoamylase
  • Sucrase-isomaltase
  • Lactase-phlorizin hydrolase
  • Trehalase
  • Disaccharidases
  • Succus entericus
  • Trypsin inhibitor
  • Trypsin receptor
  • SWEET
  • Glucose chansporter
  • TGA resynthesis
  • Chylomicrons
  • Basolateral exocytosis
  • Lipid absorption
  • Dietary elements’ gut epithelial ion transport
  • Calcium absorption and transport
  • Iron absorption and transport
  • Magnesium absorption and transport
  • Zinc absorption and transport
  • Metal absorption and transport
  • Anion absorption and transport
  • Toxic metal absorption and transport
  • Pharmacological drug
  • Vitamin absorption and transport
  • Water-soluble vitamins
  • Lipid-soluble vitamins
  • Bile acids
  • Enterohepatic recirculation
  • Water absorption and transport
  • Cystic fibrosis
  • Pancreatic hyperenzymemia
  • Gullo’s syndrome
  • Variant pancreatic ducts
  • Pancreatic ductal system
  • Alexander Mixailovich Ugolev
  • Alexander Yakovlevich (Jakulovich) Danilevsky or Alexander
  • Jakulowitsch Danilewsky
  • Anselme Payen
  • Apollinaire Bouchardat
  • Claude Bernard
  • Erhard Friedrich Leuchs
  • Gabriel Gustav Valentin
  • Hans Henriksen Ussing
  • Horace Middleton Vernon
  • Jacques Loeb
  • James Batcheller Sumner
  • Jean-François Persoz
  • Johann Nepomuk Eberle
  • Johannes Bohn
  • John Howard Northrop
  • Julius Wohlgemuth
  • Lucio Gullo
  • Moses Kunitz
  • Nikolas Petrovich Shepovalnikov
  • Robert Robison
  • Roger moss Herriott
  • Rudolf P. H. Heidenhain
  • Sigmund Rosenheim Otto
  • Theodor Schwann
  • Wendell Meredith Stanley
  • Willy Kühne (Wilhelm Friedrich Kühne)
  • Zamolodchikova Tatyana Stepanovna

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-91056-7_12
  • Chapter length: 102 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-91056-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10
Fig. 12.11

Abbreviations

5HT1B:

5-Hydroxytryptamine type 1B

Asp:

Aspartate

BACE-1:

Beta-site APP-cleaving enzyme-1

Ca2+:

Calcium ion

CCK:

Cholecystokinin

CD:

Cluster of differentiation

CLPS:

Colipase

CNS:

Central nervous system

COX-1 & -2:

Cyclooxygenases-1 and 2

CT:

Computer tomography

Cu2+:

Copper ion

Cys:

Cystine

F1-ATPase:

F-type of adenosine triphosphate enzyme

HCl:

Hydrochloric acid

Hg2+:

Mercury ion

kDa:

Kilodalton

kg:

Kilogram

mEq/L:

Milliequivalent per liter

mg/dl:

Milligram per deciliter

mL:

Milliliter

mmol:

Millimole

NBT-PABA:

N-benzoyl-l-tyrosyl-p-aminobenzoic acid

NSAID:

Non-steroid anti-inflammatory drug

PGs:

Prostaglandins

SCFA:

Short-chain fatty acids

α:

Alpha

β:

Beta

γ:

Gamma

Bibliography

  1. Fruton JS (2002) A history of pepsin and related enzymes. Q Rev Biol 77(2):127–147

    PubMed  CrossRef  CAS  Google Scholar 

  2. Sampath-Kumar PS, Fruton JS (1974) Studies on the extended active sites of acid proteinases. Proc Natl Acad Sci U S A 71(4):1070–1072

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  3. Klockars M, Reitamo S (1975) Tissue distribution of lysozyme in man. J Histochem Cytochem 23(12):932–940

    PubMed  CrossRef  CAS  Google Scholar 

  4. Isenman L, Liebow C, Rothman S (1999) The endocrine secretion of mammalian digestive enzymes by exocrine glands. Am J Physiol 276(2 Pt 1):E223–E232

    PubMed  CAS  Google Scholar 

  5. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260(1):8–20

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  6. Hamosh M (1990) Lingual and gastric lipases. Nutrition 6(6):421–428

    CAS  PubMed  Google Scholar 

  7. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. WH Freeman, New York

    Google Scholar 

  8. Rabin BR (1970) The mechanism of enzyme action. J Clin Pathol Suppl (Assoc Clin Pathol) 4:1–7

    CAS  Google Scholar 

  9. Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106(8):3188–3209

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  10. Antonov VK, Ginodman LM, Rumsh LD, Kapitannikov YV, Barshevskaya TN, Yavashev LP et al (1981) Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur J Biochem 117(1):195–200

    PubMed  CrossRef  CAS  Google Scholar 

  11. Ugolev AM, Iezuitova NN, Smirnova LF (1984) Role of digestive enzymes in the permeability of the enterocyte. In: Csáky TZ (ed) Pharmacology of intestinal permeation II, vol 70. Springer, Heidelberg

    Google Scholar 

  12. Clericuzio A (2012) Chemical and mechanical theories of digestion in early modern medicine. Stud Hist Philos Biol Biomed Sci 43(2):329–337

    PubMed  CrossRef  Google Scholar 

  13. Borgstrom B, Dahlqvist A, Lundh G, Sjovall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36(10):1521–1536

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  14. Ugolev AM (1965) Membrane (contact) digestion. Physiol Rev 45:555–595

    PubMed  CrossRef  CAS  Google Scholar 

  15. Ugolev AM, Kooshuck RI (1966) Hydrolysis of dipeptides in cells of the small intestine. Nature 212:859–860

    CrossRef  CAS  Google Scholar 

  16. Ugolev AM (1980) Trophic ecology, a new interdisciplinary science. Vestnik Acad Sci USSR 1:50–61

    Google Scholar 

  17. Ugolev AM (1991) The theory of adequate nutrition and trophic ecology. Nauka, St. Petersburg

    Google Scholar 

  18. Dahlqvist A, Borgstrom B (1961) Digestion and absorption of disaccharides in man. Biochem J 81(2):411–418

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  19. Cajori FA (1933) The enzyme activity of dogs’ intestinal juice and its relation to intestinal digestion. Amer. J. Physiol 104:659–668

    CAS  Google Scholar 

  20. Miller D, Crane RK (1961) The digestive function of the epithelium of the small intestine. I. An intracellular locus of disaccharide and sugar phosphate hydrolysis. Biochim Biophys Acta 52:281–293

    PubMed  CrossRef  CAS  Google Scholar 

  21. Parfenov AI (2010) On the occasion of the 50th anniversary of A. M. Ugolev’s current theory of digestion. Ter Arkh 82(2):5–10

    PubMed  CAS  Google Scholar 

  22. Raymond DA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96(2):683–720

    CrossRef  Google Scholar 

  23. McNaught AD, Wilkinson A; International Union of Pure and Applied Chemistry IUPAC (2014) Compendium of chemical terminology (the gold book). Blackwell Scientific Publications, Oxford

    Google Scholar 

  24. Chain EB, Mansford KRL, Pocchiari F (1960) The absorption of sucrose, maltose and higher oligosaccharides from the isolated rat small intestine. J Physiol 154:39–51

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  25. Hamilton JD, McMichael HB (1968) Role of the microvillus in the absorption of disaccharides. Lancet 2(7560):154–157

    PubMed  CrossRef  CAS  Google Scholar 

  26. Parsons DS, Prichard JS (1968) Disaccharide absorption by amphibian small intestine in vitro. J Physiol 199(137–150):137

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  27. Runge SW, Hill BJF, Moran WM (2006) A simple classroom teaching technique to help students understand Michaelis-Menten kinetics. CBE Life Sci Educ 5(4):348–352

    PubMed  PubMed Central  CrossRef  Google Scholar 

  28. Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50(39):8264–8269

    PubMed  CrossRef  CAS  Google Scholar 

  29. Abbott GW (2017) Chansporter complexes in cell signaling. FEBS Lett 591(17):2556–2576

    PubMed  CrossRef  PubMed Central  CAS  Google Scholar 

  30. Dahlqvist A, Thomson DL (1963) The digestion and absorption of maltose and trehalose by the intact rat. Acta Physiol Scand 59(1–2):111–125

    PubMed  CrossRef  CAS  Google Scholar 

  31. Malathi P, Ramaswamy K, Caspary WF, Crane RK (1973) Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. I. Evidence for a disaccharidase-related transport system. Biochim Biophys Acta Biomembr 307(3):613–626

    CrossRef  CAS  Google Scholar 

  32. Warden DA, Fannin FF, Evans JO, Hanke DW, Diedrich DF (1980) A hydrolase-related transport system is not required to explain the intestinal uptake of glucose liberated from phlorizin. Biochim Biophys Acta 599(2):664–672

    PubMed  CrossRef  CAS  Google Scholar 

  33. Alvarado F, Lherminier M, Phan H-H (1984) Hamster intestinal disaccharide absorption: extracellular hydrolysis precedes transport of the monosaccharide products. J Physiol 355:493–507

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  34. Meyer H, Vitavska O, Wieczorek H (2011) Identification of an animal sucrose transporter. J Cell Sci 124:1984–1991

    PubMed  CrossRef  CAS  Google Scholar 

  35. Likely R, Johnson E, Ahearn GA (2015) Functional characterization of a putative disaccharide membrane transporter in crustacean intestine. J Comp Physiol B 185(2):173–183

    PubMed  CrossRef  CAS  Google Scholar 

  36. Haeuw JF, Michalski JC, Strecker G, Spik G, Montreuil J (1991) Cytosolic glycosidases: do they exist? Glycobiology 1(5):487–492

    PubMed  CrossRef  CAS  Google Scholar 

  37. De Gasperi R, Daniel PF, Warren CD (1992) A human lysosomal alpha-mannosidase specific for the core of complex glycans. J Biol Chem 267(14):9706–9712

    PubMed  Google Scholar 

  38. Herscovics A (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473(1):96–107

    PubMed  CrossRef  CAS  Google Scholar 

  39. Grard T, Herman V, Saint-Pol A, Kmiecik D, Labiau O, Mir AM et al (1996) Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic alpha-D-mannosidase. Biochem J 316(3):787–792

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  40. Daniel PF, Winchester B, Warren CD (1994) Mammalian alpha-mannosidases–multiple forms but a common purpose? Glycobiology 4(5):551–566

    PubMed  CrossRef  CAS  Google Scholar 

  41. Moremen KW (2002) Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. Biochim Biophys Acta 1573(3):225–235

    PubMed  CrossRef  CAS  Google Scholar 

  42. Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3(2):741–783

    PubMed  PubMed Central  Google Scholar 

  43. Wang Z, Xu S, Du K, Huang F, Chen Z, Zhou K et al (2016) Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans. Mol Biol Evol 33(12):3144–3157

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  44. Uneyama H, San Gabriel A, Kawai M, Tomoe M, Torii K (2008) Physiological role of dietary free glutamate in the food digestion. Asia Pac J Clin Nutr 17(1):372–375

    PubMed  CAS  Google Scholar 

  45. Pereverzev VA, Lobanok LM (2014) Physiology of digestion. In: Kubarko AI (ed) Normal physiology. Visheishaya Shkola, Minsk, Belarus

    Google Scholar 

  46. Nikitina OS, Welcome MO, Pereverzev VA (2016) Human anatomy and physiology. In: 2 parts. Part 1. Belarusian State Medical University Press, Minsk

    Google Scholar 

  47. Roxas M (2008) The role of enzyme supplementation in digestive disorders. Altern Med Rev 13(4):307–314

    PubMed  Google Scholar 

  48. Ianiro G, Pecere S, Giorgio V, Gasbarrini A, Cammarota G (2016) Digestive enzyme supplementation in gastrointestinal diseases. Curr Drug Metab 17(2):187–193

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  49. Layer P, Keller J (2003) Lipase supplementation therapy: standards, alternatives, and perspectives. Pancreas 26(1):1–7

    PubMed  CrossRef  CAS  Google Scholar 

  50. Mößeler A, Kamphues J (2017) Black-box gastrointestinal tract-needs and prospects of gaining insights of fate of fat, protein, and starch in case of exocrine pancreatic insufficiency by using fistulated pigs. Nutrients 9(2):E150

    PubMed Central  CrossRef  CAS  Google Scholar 

  51. Nakajima K, Oshida H, Muneyuki T, Kakei M (2012) Pancrelipase: an evidence-based review of its use for treating pancreatic exocrine insufficiency. Core Evid 7:77–91

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  52. Lorkowski G (2012) Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases. Int J Physiol Pathophysiol Pharmacol 4(1):10–27

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Iwamuro M, Okada H, Matsueda K, Inaba T, Kusumoto C, Imagawa A, Yamamoto K (2015) Review of the diagnosis and management of gastrointestinal bezoars. World J Gastrointest Endosc 7(4):336–345

    PubMed  PubMed Central  CrossRef  Google Scholar 

  54. Pavan R, Jain S, Shraddha Kumar A (2012) Properties and therapeutic application of bromelain: a review. Biotechnol Res Int 2012:976203

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  55. Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R (2016) Potential role of bromelain in clinical and therapeutic applications. Biomed Rep 5(3):283–288

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  56. Ushakova NA, Nekrasov RV, Pravdin IV, Sverchkova NV, Kolomiyets EI, Pavlov DS (2015) Mechanisms of the effects of probiotics on symbiotic digestion. Biol Bull Russ Acad Sci 42(5):394–400

    CrossRef  Google Scholar 

  57. Czjzek M (2017) Biochemistry: a wine-induced breakdown. Nature 544:45–46

    PubMed  CrossRef  CAS  Google Scholar 

  58. Cruz-Mora J, Martínez-Hernández NE, del Campo-López FM, Viramontes-Hörner D, Vizmanos-Lamotte B, Muñoz-Valle JF, García-García G, Parra-Rojas I, Castro-Alarcón N (2014) Effects of a symbiotic on gut microbiota in mexican patients with end-stage renal disease. J Ren Nutr 24(5):330–335

    PubMed  CrossRef  Google Scholar 

  59. Derrien M, Veiga P (2017) Rethinking diet to aid human-microbe symbiosis. Trends Microbiol 25(2):100–112

    PubMed  CrossRef  CAS  Google Scholar 

  60. Hutter T, Gimbert C, Bouchard F, Lapointe F-J (2015) Being human is a gut feeling. Microbiome 3:9

    PubMed  PubMed Central  CrossRef  Google Scholar 

  61. Pudlo NA, Urs K, Kumar SS, German JB, Mills DA, Martens EC (2015) Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. mBio 6(6):e01282–15

    CrossRef  CAS  Google Scholar 

  62. Austin GL, Ogden LG, Hill JO (2011) Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971–2006. Am J Clin Nutr 93(4):836–843

    PubMed  CrossRef  CAS  Google Scholar 

  63. Medagama A, Fernando D, Widanapathirana H (2015) Energy and nutrient intakes of Sri Lankan patients with type 2 diabetes mellitus: a cross-sectional survey. BMC Res Notes 8:753

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  64. Reynolds RD, Lickteig JA, Howard MP, Deuster PA (1998) Intakes of high fat and high carbohydrate foods by humans increased with exposure to increasing altitude during an expedition to Mt. Everest. J Nutr 128(1):50–55

    PubMed  CrossRef  CAS  Google Scholar 

  65. Wismann J, Willoughby D (2006) Gender differences in carbohydrate metabolism and carbohydrate loading. J Int Soc Sports Nutr 3:28

    PubMed  PubMed Central  CrossRef  Google Scholar 

  66. Lin AH-M, Lee B-H, Nichols BL, Quezada-Calvillo R, Rose DR, Naim HY, Hamaker BR (2012) Starch source influences dietary glucose generation at the mucosal α-glucosidase level. J Biol Chem 287:36917–36921

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  67. Lin AH-M, Lee B-H, Chang W-J (2016) Small intestine mucosal α-glucosidase: a missing feature of in vitro starch digestibility. Food Hydrocoll 53:163–171

    CrossRef  CAS  Google Scholar 

  68. Cantare BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    CrossRef  CAS  Google Scholar 

  69. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    PubMed  CrossRef  CAS  Google Scholar 

  70. Velmurugan C, Natarajan R (2015) Research productivity of amylase in microbiology in Indian perspective: a scientometric analysis. In: Manimaran D, Velmurugan C, Elangovan N (eds) Microbial production of amylase in Bacillus Cereus Sp. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  71. Wisniak J (2004) Anselme Payen. Educ Quím 16(4):114–126

    Google Scholar 

  72. Fieker A, Philpott J, Armand M (2011) Enzyme replacement therapy for pancreatic insufficiency: present and future. Clin Exp Gastroenterol 4:55–73

    PubMed  PubMed Central  Google Scholar 

  73. Mehta D, Satyanarayana T (2016) Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Front Microbiol 7:1129

    PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Gopinath SCB, Anbu P, Md Arshad MK, Lakshmipriya T, Voon CH, Hashim U, Chinni SV (2017) Biotechnological processes in microbial amylase production. Biomed Res Int 2017:1272193

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  75. Wu AC, Ral J-P, Morell MK, Gilbert RG (2014) New perspectives on the role of α- and β-amylases in transient starch synthesis. PLoS ONE 9(6):e100498

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  76. Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V (2003) On the mechanism of alpha-amylase. Eur J Biochem 270(19):3871–3879

    PubMed  CrossRef  CAS  Google Scholar 

  77. Todaka D, Matsushima H, Morohashi Y (2000) Water stress enhances beta-amylase activity in cucumber cotyledons. J Exp Bot 51(345):739–745

    PubMed  CrossRef  CAS  Google Scholar 

  78. Picukans I, Umminger BL (1979) Comparative activities of glycogen phosphorylase and gamma-amylase in livers of carp (Cyprinus carpio) and goldfish (Carassius auratus). Comp Biochem Physiol B 62(4):455–457

    PubMed  CrossRef  CAS  Google Scholar 

  79. Simon K, Gładysz A, Bakońska-Pacoń E, Sobiech KA, Dzik T (1991) The activity of alpha-amylase and gamma-amylase in serum and pancreatic homogenate of rats with experimental liver damage treated with colchicine. Mater Med Pol 23(2):103–106

    PubMed  CAS  Google Scholar 

  80. Soininen K, Ceska M, Adlercreutz H (1972) Comparison between a new chromogenic α-amylase test (phadebas) and the wohlgemuth amyloclastic method in urine. Scand J Clin Lab Investig 30(3):291–297

    CrossRef  CAS  Google Scholar 

  81. Chua KS, Tan IK, Vengadiswaran R, Peiris JT (1979) An assessment of four methods for the assay of amylase activity. Ann Acad Med Singapore 8(2):187–192

    PubMed  CAS  Google Scholar 

  82. Hathaway JA, Hunter DT, Berrett CR (1970) An automated method for the determination of amylase. Clin Biochem 3(3):217–224

    PubMed  CrossRef  CAS  Google Scholar 

  83. Moriyama T, Ikeda H (1996) Hydrolases acting on glycosidic bonds: chromatographic and electrophoretic separations. J Chromatogr B Biomed Appl 684(1–2):201–216

    PubMed  CrossRef  CAS  Google Scholar 

  84. Lehane DP, Wissert PJ, Lum G, Levy AL (1977) Amylase activity in serum and urine: comparison of results by the amyloclastic, dyed-starch, and nephelometric techniques. Clin Chem 23(6):1061–1065

    PubMed  CAS  Google Scholar 

  85. Fenton J, Foery R, Piatt L, Geschwindt K (1982) A new chromogenic amylase method compared with two established methods. Clin Chem 28(4 Pt 1):704–706

    PubMed  CAS  Google Scholar 

  86. Behringer V, Borchers C, Deschner T, Möstl E, Selzer D, Hohmann G (2013) Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences. PLoS ONE 8(4):e60773

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  87. Foo AY, Rosalki SB (1986) Measurement of plasma amylase activity. Ann Clin Biochem 23:624–637

    PubMed  CrossRef  CAS  Google Scholar 

  88. Rohleder N, Nater UM (2009) Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology 34(4):469–485

    PubMed  CrossRef  CAS  Google Scholar 

  89. Branca P, Rodriguez RM, Rogers JT, Ayo DS, Moyers JP, Light RW (2001) Routine measurement of pleural fluid amylase is not indicated. Arch Intern Med 161(2):228–232

    PubMed  CrossRef  CAS  Google Scholar 

  90. Mones RL, Yankah A, Duelfer D, Bustami R, Mercer G (2011) Disaccharidase deficiency in pediatric patients with celiac disease and intact villi. Scand J Gastroenterol 46(12):1429–1434

    PubMed  CrossRef  CAS  Google Scholar 

  91. Sandeep GK, Sonny CKF, Joseph FF (1999) Disaccharidase activities in children: normal values and comparison based on symptoms and histologic changes. J Pediatric Gastroenterol Nutr 28(3):246–251

    CrossRef  Google Scholar 

  92. Reid EW (1901) Intestinal absorption of maltose. J Physiol (Lond) 26:427–435

    CrossRef  CAS  Google Scholar 

  93. Plimmer RHA (1907) On the presence of lactase in the intestines of animals and on the adaptation of the intestine to lactose. J Physiol (Lond) 35:20–31

    CrossRef  CAS  Google Scholar 

  94. Stevens JA, Kidder DE (1972) The distribution of trehalase, sucrase, -amylase, glucoamylase and lactase (-galactosidase) along the small intestine of five pigs. Br J Nutr 28(1):129–137

    PubMed  CrossRef  CAS  Google Scholar 

  95. Dahlqvist A (1970) Assay of intestinal disaccharidases. Enzymol Biol Clin (Basel) 11(1):52–66

    CrossRef  CAS  Google Scholar 

  96. Varljen J, Detel D, Batičić L, Erakovic VH, Štrbo N, Ćuk M, Milin Č (2005) Age dependent activity of brush-border enzymes in BALB/c mice. Croat Chem Acta 78(3):379–384

    CAS  Google Scholar 

  97. Brown HT, Heron J (1880) Uber die hydrolytischen Wirkungen des Pankreas und des Dunndarmes. Ann Chem Pharmacol 204:228–251

    CrossRef  Google Scholar 

  98. Mosenthal HO (1911) Observations on the succus entericus. J Exp Med 13(3):319–327

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  99. Dyck WP, Bonnet D, Lasater J, Stinson C, Hall FF (1974) Hormonal stimulation of intestinal disaccharidase release in the dog. Gastroenterology 66(4):533–538

    PubMed  CAS  Google Scholar 

  100. Cajori FA (1935) The lactase activity of the intestinal mucosa of the dog and some characteristics of intestinal lactase. J Biol Chem 109:159–168

    CAS  Google Scholar 

  101. Johnson FR, Kugler JH (1953) The distribution of alkaline phosphatase in the mucosal cells of the small intestine of the rat, cat and dog. J Anat (Lond) 87:247–256

    CAS  Google Scholar 

  102. Nachlas MM, Monis B, Rosenblatt D, Seligman AM (1960) Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide. J Biophys Biochem Cytol 7:261–264

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  103. Miller D, Crane RK (1961) The digestive function of the epithelium of the small intestine. II. Localization of disaccharide hydrolysis in the isolated brush border portion of intestinal epithelial cells. Biochim Biophys Acta (Amst) 52:293–298

    CrossRef  CAS  Google Scholar 

  104. Wallis JL, Lipski PS, Mathers JC, James OFW, Hirst BH (1993) Duodenal brush-border mucosal glucose transport and enzyme activities in aging man and effect of bacterial contamination of the small intestine. Digest Dis Sci 38(3):403–409

    PubMed  CrossRef  CAS  Google Scholar 

  105. Gudmand-Høyer E, Skovbjerg H (1996) Disaccharide digestion and maldigestion. Scand J Gastroenterol Suppl 216:111–121

    PubMed  CrossRef  Google Scholar 

  106. Jones K, Sim L, Mohan S, Kumarasamy J, Liu H, Avery S et al (2011) Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Bioorg Med Chem 19(13):3929–3934

    PubMed  CrossRef  CAS  Google Scholar 

  107. Keller J, Layer P (2014) The pathophysiology of malabsorption. Viszeralmedizin 30(3):150–154

    PubMed  PubMed Central  CrossRef  Google Scholar 

  108. Gericke B, Amiri M, Naim HY (2016) The multiple roles of sucrase-isomaltase in the intestinal physiology. Mol Cell Pediatr 3:2

    PubMed  PubMed Central  CrossRef  Google Scholar 

  109. Lee PC, Werlin S, Trost B, Struve M (2004) Glucoamylase activity in infants and children: normal values and relationship to symptoms and histological findings. J Pediatr Gastroenterol Nutr 39(2):161–165

    PubMed  CrossRef  CAS  Google Scholar 

  110. Lebenthal E, Khin-Maung-U Zheng BY, Lu RB, Lerner A (1994) Small intestinal glucoamylase deficiency and starch malabsorption: a newly recognized alpha-glucosidase deficiency in children. J Pediatr 124(4):541–546

    PubMed  CrossRef  CAS  Google Scholar 

  111. Lina BA, Jonker D, Kozianowski G (2002) Isomaltulose (Palatinose): a review of biological and toxicological studies. Food Chem Toxicol 40(10):1375–1381

    PubMed  CrossRef  CAS  Google Scholar 

  112. Suraphad P, Suklaew PO, Ngamukote S, Adisakwattana S, Mäkynen K (2017) The effect of isomaltulose together with green tea on glycemic response and antioxidant capacity: a single-blind, crossover study in healthy subjects. Nutrients 9(5):E464

    Google Scholar 

  113. Takazoe I, Frostell G, Ohta K, Topitsoglou V, Sasaki N (1985) Palatinose—a sucrose substitute. Pilot studies. Swed Dent J 9(2):81–87

    PubMed  CAS  Google Scholar 

  114. Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH et al (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40(7):871–898

    PubMed  CrossRef  CAS  Google Scholar 

  115. Kolho KL, Savilahti E (2000) Ethnic differences in intestinal disaccharidase values in children in Finland. J Pediatr Gastroenterol Nutr 30(3):283–287

    PubMed  CrossRef  CAS  Google Scholar 

  116. Eloy R, Battinger F, Bignon JY, Ananna A, Grenier JF (1979) Experimental study in rats. Intestinal brush border enzymes and chronic alcohol ingestion. Res Exp Med 175(3):257–269

    CrossRef  CAS  Google Scholar 

  117. Neale G (1971) Disaccharidase deficiencies. J Clin Pathol Suppl (R Coll Pathol) 5:22–28

    CrossRef  Google Scholar 

  118. Herber R (1972) Disaccharidase deficiency in health and disease. Calif Med 116(6):23–37

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Dahlqvist A (1962) Specificity of the human intestinal disaccharidases and implications for hereditary disaccharide intolerance. J Clin Invest 41(3):463–470

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  120. Semenza G (1976) Small intestinal disaccharidases: their properties and role as sugar translocators across natural and artificial membranes. In: Martonosi AN (ed) The enzymes of biological membranes. Plenum Press, New York

    Google Scholar 

  121. Allen LR, Stephen WA (2006) Low-carbohydrate diets. Am Fam Phys 73(11):1942–1948

    Google Scholar 

  122. Food and Nutrition Board. Institute of Medicine (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press, Washington

    Google Scholar 

  123. Levin RJ (1994) Digestion and absorption of carbohydrates—from molecules and membranes to humans. Am J Clin Nutr 59(3):690S–698S

    PubMed  CrossRef  CAS  Google Scholar 

  124. Shafik A, El Sibai O, Shafik AA, Shafik IA (2006) Demonstration of a physiologic sphincter at duodeno-jejunal junction. Front Biosci 11:2790–2794

    CrossRef  PubMed  Google Scholar 

  125. Bronner F (2003) Mechanisms of intestinal calcium absorption. J Cell Biochem 88(2):387–393

    CrossRef  CAS  PubMed  Google Scholar 

  126. Shafik A, Shafik IA, Sibai OE, Shafik AA (2007) Duodeno-jejunal junction dyssynergia: description of a novel syndrome. World J Gastroenterol 13(30):4112–4116

    PubMed  PubMed Central  CrossRef  Google Scholar 

  127. Kellogg EL, Kellogg WA (1921) Chronic duodenal obstruction with duodeno-jejunostomy as a method of treatment. Ann Surg 73(5):578–608

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  128. Virchenko SB, Sayenko VF, Kucherenko TL, Tsedik NN, Elbrønd H, Djurhuus JC, Funch-Jensen P (1993) The duodenojejunal junction and Treitz ligament in the regulation of duodenal emptying. Scand J Gastroenterol 28(9):753–759

    CrossRef  CAS  PubMed  Google Scholar 

  129. Cheeseman CI (2002) Intestinal hexose absorption: transcellular or paracellular fluxes. J Physiol 544(Pt 2):336

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  130. Hewitt JA (1924) The metabolism of carbohydrates. Part III. The absorption of glucose, fructose and galactose from the small intestine. Biochem J 18(1):161–170

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  131. Hamilton KL, Butt AG (2013) Glucose transport into everted sacs of the small intestine of mice. Adv Physiol Educ 37(4):415–426

    CrossRef  PubMed  Google Scholar 

  132. Riklis E, Quastel JH (1958) Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol 36:347–362

    PubMed  CrossRef  CAS  Google Scholar 

  133. Crane RK (1962) Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc 21:891–895

    PubMed  CAS  Google Scholar 

  134. Crane RK (1960) Intestinal absorption of sugars. Physiol Rev 40:789–825

    PubMed  CrossRef  CAS  Google Scholar 

  135. Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381

    PubMed  CrossRef  CAS  Google Scholar 

  136. Wright EM, Loo DDF, Hirayama BA, Turk E (2004) Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology 19(6):370–376

    PubMed  CrossRef  CAS  Google Scholar 

  137. Röder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H (2014) The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS ONE 9(2):e89977

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  138. Dyer J, Vayro S, King TP, Shirazi-Beechey SP (2003) Glucose sensing in the intestinal epithelium. Eur J Biochem 270(16):3377–3388

    PubMed  CrossRef  CAS  Google Scholar 

  139. Tyagi NK, Puntheeranurak T, Raja M, Kumar A, Wimmer B, Neundlinger I, et al (2011) A biophysical glance at the outer surface of the membrane transporter SGLT1. Biochim Biophys Acta 1808(1):1–18

    CrossRef  CAS  Google Scholar 

  140. Krofchick D, Silverman M (2003) Investigating the conformational states of the rabbit Na+/glucose cotransporter. Biophys J 84(6):3690–3702

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  141. Wilder-Smith CH, Li X, Ho SS, Leong SM, Wong RK, Koay ES, Ferraris RP (2014) Fructose transporters GLUT5 and GLUT2 expression in adult patients with fructose intolerance. United Eur Gastroenterol J 2(1):14–21

    CrossRef  CAS  Google Scholar 

  142. Douard V, Ferraris RP (2008) Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 295(2):E227–E237

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  143. Jones HF, Butler RN, Brooks DA (2011) Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol 300(2):G202–G206

    PubMed  CrossRef  CAS  Google Scholar 

  144. Xu Y, Tao Y, Cheung LS, Fan C, Chen L-Q, Xu S et al (2014) Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:448–452

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  145. Naftalin RJ (2014) Does apical membrane GLUT2 have a role in intestinal glucose uptake? Version 1. F1000Res 3:304

    Google Scholar 

  146. Drozdowski LA, Thomson ABR (2006) Intestinal sugar transport. World J Gastroenterol 12(11):1657–1670

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  147. Sundler F (2004) GI tract, general anatomy (cells). In: Martini L (ed) Encyclopedia of endocrine diseases. Elsevier, MA, USA

    Google Scholar 

  148. Stümpel F, Burcelin R, Jungermann K, Thorens B (2001) Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. PNAS 98(20):11330–11335

    PubMed  PubMed Central  CrossRef  Google Scholar 

  149. Hosokawa M, Thorens B (2002) Glucose release from GLUT2-null hepatocytes: characterization of a major and a minor pathway. Am J Physiol Endocrinol Metab 282:E794–E801

    PubMed  CrossRef  CAS  Google Scholar 

  150. Santer R, Hillebrand G, Steinmann B, Schaub J (2003) Intestinal glucose transport: evidence for a membrane traffic–based pathway in humans. Gastroenterology 124:34–39

    PubMed  CrossRef  CAS  Google Scholar 

  151. Deng D, Yan N (2016) GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci 25(3):546–558

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  152. Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y et al (2015) Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527(7577):259–263

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  153. Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ et al (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    PubMed  CrossRef  CAS  Google Scholar 

  154. Li-Qing C, Bi-Huei H, Sylvie L, Hitomi T, Mara LH, Xiao-Qing Q et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468(7323):527–532

    CrossRef  CAS  Google Scholar 

  155. Hitomi T, Wolf BF (2010) Facilitative plasma membrane transporters function during ER transit. FASEB J 24(8):2849–2858

    CrossRef  CAS  Google Scholar 

  156. White H, Venkatesh B (2011) Clinical review: ketones and brain injury. Crit Care 15(2):219

    PubMed  PubMed Central  CrossRef  Google Scholar 

  157. Welcome MO, Razvodovsky YE, Pereverzeva EV, Pereverzev VA (2013) State of cognitive functions of students-medics with different relationship to alcohol use. Belarusian State Medical University Press, Minsk, Belarus

    Google Scholar 

  158. Kageyama T (2002) Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell Mol Life Sci 59(2):288–306

    PubMed  CrossRef  CAS  Google Scholar 

  159. Roberts NB (2006) Review article: human pepsins—their multiplicity, function and role in reflux disease. Aliment Pharmacol Ther 24(2):2–9

    PubMed  CrossRef  CAS  Google Scholar 

  160. McFarlane J, Dunbar VE, Borsook H, Wasteneys H (1927) The stages of the peptic hydrolysis of egg albumin. J Gen Physiol 10(3):437–450

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  161. Kousoulis AA, Tsoucalas G, Armenis I, Marineli F, Karamanou M, Androutsos G (2012) From the “hungry acid” to pepsinogen: a journey through time in quest for the stomach’s secretion. Ann Gastroenterol 25(2):119–122

    PubMed  PubMed Central  Google Scholar 

  162. Matlin KS, Caplan MJ (2017) The secretory pathway at 50: a golden anniversary for some momentous grains of silver. Mol Biol Cell 28(2):229–232

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  163. Hajdu SI, Tang P (2008) The saga of carcinoid and oat-cell carcinoma. Ann Clin Lab Sci 38(4):414–417

    PubMed  Google Scholar 

  164. Lee D, Ryle AP (1967) Pepsin D: A minor component of commercial pepsin preparations. Biochem J 104(3):742–748

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  165. Lee D, Ryle AP (1967) Pepsinogen D. A fourth proteolytic zymogen from pig gastric mucosa. Biochem J 104(3):735–741

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  166. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight-matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  167. Ward PH, Neumann VK, Chiang L (1978) Partial characterization of pepsins and gastricsins and their zymogens from human and toad gastric mucosae. Comp Biochem Physiol Part B Comp Biochem 61(4):491–498

    CrossRef  CAS  Google Scholar 

  168. Majewska M, Lipka A, Panasiewicz G, Gowkielewicz M, Jozwik M, Majewski MK, Szafranska B (2017) Identification of novel placentally expressed aspartic proteinase in humans. Int J Mol Sci 18(6):1227

    PubMed Central  CrossRef  Google Scholar 

  169. Shen S, Jiang J, Yuan Y (2017) Pepsinogen C expression, regulation and its relationship with cancer. Cancer Cell Int 17:57

    PubMed  PubMed Central  CrossRef  Google Scholar 

  170. Florkin M (1957) Discovery of pepsin by Theodor Schwann. Rev Med Liege 12(5):139–144

    PubMed  CAS  Google Scholar 

  171. Northrop JH (1929) Crystalline pepsin. Science 69:580

    PubMed  CrossRef  CAS  Google Scholar 

  172. Simoni RD, Hill RH, Vaughan M (2002) Urease, the first crystalline enzyme and the proof that enzymes are proteins: the work of James B. Sumner. J Biol Chem 277(35):23e

    PubMed  Google Scholar 

  173. Hasnain S (2016) Impact and influence of crystallography across the sciences. IUCrJ 3(Pt 6):389–390

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  174. Andersen OS (2005) A brief history of the journal of general physiology. J Gen Physiol 125(1):3–12

    PubMed  PubMed Central  CrossRef  Google Scholar 

  175. Northrop JH, Kunitz M (1932) Crystalline trypsin. I. Isolation and tests of purity. J Gen Physiol 16:267–294

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  176. Kunitz M, Northrop JH (1934) The isolation of crystalline trypsinogen and its conversion into crystalline trypsin. Science 80:505–506

    PubMed  CrossRef  CAS  Google Scholar 

  177. Herriott RM, Northrop JH (1936) Isolation of crystalline pepsinogen from swine gastric mucosae and its autocatalytic conversion into pepsin. Science 83:469–470

    PubMed  CrossRef  CAS  Google Scholar 

  178. Stanley W (1935) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81:644–645

    PubMed  CrossRef  CAS  Google Scholar 

  179. Eisenstein M (2016) The field that came in from the cold. Nat Methods 13:19–22

    PubMed  CrossRef  CAS  Google Scholar 

  180. McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun 70(Pt 1):2–20

    PubMed  CrossRef  CAS  Google Scholar 

  181. McPherson A (2017) Protein crystallization. Methods Mol Biol 1607:17–50

    PubMed  CrossRef  CAS  Google Scholar 

  182. Coskun O (2016) Separation techniques: chromatography. North Clin Istanb 3(2):156–160

    PubMed  PubMed Central  Google Scholar 

  183. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  184. Ehren J, Govindarajan S, Moron B, Minshull J, Khosla C (2008) Protein engineering of improved prolyl endopeptidases for celiac sprue therapy. Protein Eng Des Sel 21(12):699–707

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  185. Moose RE, Clemente JC, Jackson LR, Ngo M, Wooten K, Chang R et al (2007) Analysis of binding interactions of pepsin inhibitor-3 to mammalian and malarial aspartic proteases. Biochemistry 46(49):14198–14205

    PubMed  CrossRef  CAS  Google Scholar 

  186. Sampath-Kumar PS, Fruton JS (1974) Studies on the extended active sites of acid proteinases. Proc Natl Acad Sci U S A 71(4):1070–1072

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  187. Kay J, Dykes CW (1977) The first cleavage site in pepsinogen activation. Adv Exp Med Biol 95:103–127

    PubMed  CrossRef  CAS  Google Scholar 

  188. Khan AR, James MN (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7(4):815–836

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  189. Pizauro JM Jr, Ferro JA, de Lima ACF, Routman KS, Portella MC (2004) The zymogen-enteropeptidase system: a practical approach to study the regulation of enzyme activity by proteolytic cleavage. Biochem Mol Biol Educ 32(1):45–48

    PubMed  CrossRef  Google Scholar 

  190. Richter C, Tanaka T, Yada RY (1998) Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin. Biochem J 335(3):481–490

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  191. Sanny CG, Hartsuck JA, Tang J (1975) Conversion of pepsinogen to pepsin. Further evidence for intramolecular and pepsin-catalyzed activation. J Biol Chem 250(7):2635–2639

    PubMed  CAS  Google Scholar 

  192. Taggart RT, Mohandas TK, Shows TB, Bell GI (1985) Variable numbers of pepsinogen genes are located in the centromeric region of human chromosome 11 and determine the high-frequency electrophoretic polymorphism. PNAS 82(18):6240–6244

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  193. Marciniszyn J Jr, Huang JS, Hartsuck JA, Tang J (1976) Mechanism of intramolecular activation of pepsinogen. Evidence for an intermediate delta and the involvement of the active site of pepsin in the intramolecular activation of pepsinogen. J Biol Chem 251(22):7095–7102

    PubMed  CAS  Google Scholar 

  194. Kageyama T (1998) Molecular cloning, expression and characterization of an Ascaris inhibitor for pepsin and cathepsin E. Eur J Biochem 253(3):804–809

    PubMed  CrossRef  CAS  Google Scholar 

  195. Zalatoris J, Rao-Naik C, Fecho G, Girdwood K, Kay J, Dunn BM (1998) Expression, purification, and characterization of the recombinant pepsin inhibitor from Ascaris suum. Adv Exp Med Biol 436:387–389

    PubMed  CrossRef  CAS  Google Scholar 

  196. Parikh S, Gut J, Istvan E, Goldberg DE, Havlir DV, Rosenthal PJ (2005) Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother 49(7):2983–2985

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  197. Yang H, Nkeze J, Zhao RY (2012) Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy. Cell Biosci 2:32

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  198. Parikh S, Liu J, Sijwali P, Gut J, Goldberg DE, Rosenthal PJ (2006) Antimalarial effects of human immunodeficiency virus type 1 protease inhibitors differ from those of the aspartic protease inhibitor pepstatin. Antimicrob Agents Chemother 50(6):2207–2209

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  199. Boss C, Richard-Bildstein S, Weller T, Fischli W, Meyer S, Binkert C (2003) Inhibitors of the Plasmodium falciparum parasite aspartic protease plasmepsin II as potential antimalarial agents. Curr Med Chem 10(11):883–907

    PubMed  CrossRef  CAS  Google Scholar 

  200. dos Santos AL (2010) HIV aspartyl protease inhibitors as promising compounds against Candida albicans André Luis Souza dos Santos. World J Biol Chem 1(2):21–30

    PubMed  PubMed Central  CrossRef  Google Scholar 

  201. Venugopal C, Demos CM, Rao KS, Pappolla MA, Sambamurti K (2008) Beta-secretase: structure, function, and evolution. CNS Neurol Disord: Drug Targets 7(3):278–294

    CrossRef  CAS  Google Scholar 

  202. Wolfe MS (2010) Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases. Biol Chem 391(8):839–847

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  203. Epis R, Marcello E, Gardoni F, Di Luca M (2012) Alpha, beta-and gamma-secretases in Alzheimer’s disease. Front Biosci (Schol Ed) 4:1126–1150

    Google Scholar 

  204. Kametani F (2008) Epsilon-secretase: reduction of amyloid precursor protein epsilon-site cleavage in Alzheimer’s disease. Curr Alzheimer Res 5(2):165–171

    PubMed  CrossRef  CAS  Google Scholar 

  205. Vassar R (2007) Beta-secretase (BACE) as a drug target for Alzheimer’s disease. Adv Drug Deliv Rev 54(12):1589–1602

    CrossRef  Google Scholar 

  206. Tomita T (2009) Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother 9(5):661–679

    PubMed  CrossRef  CAS  Google Scholar 

  207. Evin G, Sernee MF, Masters CL (2006) Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer’s disease: prospects, limitations and strategies. CNS Drugs 20(5):351–372

    PubMed  CrossRef  CAS  Google Scholar 

  208. Schlenk F (1985) Early research on fermentation—a story of missed opportunities. Trends in Biochem Sci 10(6):252–254

    CrossRef  CAS  Google Scholar 

  209. Kukar T, Golde TE (2008) Possible mechanisms of action of NSAIDs and related compounds that modulate γ-secretase cleavage. Curr Top Med Chem 8(1):47–53

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  210. Teich N, Le Maréchal C, Kukor Z, Caca K, Witzigmann H, Chen JM et al (2004) Interaction between trypsinogen isoforms in genetically determined pancreatitis: mutation E79K in cationic trypsin (PRSS1) causes increased transactivation of anionic trypsinogen (PRSS2). Hum Mutat 23(1):22–31

    PubMed  CrossRef  CAS  Google Scholar 

  211. Hegyi E, Sahin-Tóth M (2017) Genetic risk in chronic pancreatitis: the trypsin-dependent pathway. Dig Dis Sci 62(7):1692–1701

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  212. Zator Z, Whitcomb DC (2017) Insights into the genetic risk factors for the development of pancreatic disease. Therap Adv Gastroenterol 10(3):323–336

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  213. Kühne (1877) Über das Verhalten verschiedener organisirter und sog. Ungeformter Fermente, Verhandlungen des Heidelb. Naturhist Med Vereins, Neue Folge (On the behavior of various organized and so-called unformed ferments, Negotiations of the Heidelb. Naturhist Med Assoc, New Series) 1(3):190–193

    Google Scholar 

  214. Lanska DJ (2014) Kühne, Wilhelm (Willy) Friedrich. In: MJ Aminoff, RB Daroff (eds) Encyclopedia of the neurological sciences, 2nd ed. Elsevier, MA, USA

    CrossRef  Google Scholar 

  215. Howard JM, Hess W (2002) History of the pancreas: mysteries of a hidden organ. Springer, New York

    CrossRef  Google Scholar 

  216. Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290(1):205–218

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  217. Maike G (2006) Sculpted through time: evolution and function of serine proteases from the mast cell chymase locus. Uppsala University, Uppsala

    Google Scholar 

  218. Murthy SN, Kostman J, Dinoso VP Jr (1980) Effect of pH, substrate, and temperature on tryptic activity of duodenal samples. Dig Dis Sci 25(4):289–294

    PubMed  CrossRef  CAS  Google Scholar 

  219. Cheison CS, Brand J, Leeb E, Kulozik U (2011) Analysis of the effect of temperature changes combined with different alkaline pH on the β-lactoglobulin trypsin hydrolysis pattern using MALDI-TOF-MS/MS. J Agric Food Chem 59(5):1572–1581

    CrossRef  CAS  Google Scholar 

  220. Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41(9):832–836

    PubMed  CrossRef  CAS  Google Scholar 

  221. Hoffmeister A, Dietz G, Zeitschel U, Mössner J, Rossner S, Stahl T (2009) BACE1 is a newly discovered protein secreted by the pancreas which cleaves enteropeptidase in vitro. JOP 10(5):501–506

    PubMed  Google Scholar 

  222. Kazal LA, Spicer DS, Brahinsky RA (1948) Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc 70:3034–3040

    PubMed  CrossRef  CAS  Google Scholar 

  223. Wang G-P, Xu C-S (2010) Pancreatic secretory trypsin inhibitor: more than a trypsin inhibitor. World J Gastrointest Pathophysiol 1(2):85–90

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  224. Herzig KH, Schon I, Tatemoto K, Ohe Y, Li Y, Folsch UR, Owyang C (1996) Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine. Proc Nat Acad Sci 93:7927–7932

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  225. Li Y, Hao Y, Owyang C (2000) Diazepam-binding inhibitor mediates feedback regulation of pancreatic secretion and postprandial release of cholecystokinin. J Clin Invest 105(3):351–359

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  226. Costa E, Guidotti A (1991) Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci 49(5):325–344

    PubMed  CrossRef  CAS  Google Scholar 

  227. Anholt RRH, Pederson PL, Desouza EB, Snyder SH (1986) The peripheral-type benzodiazepine receptor: localization to the mitochondrial outer membrane. J Biol Chem 261:576–583

    PubMed  CAS  Google Scholar 

  228. Gersuk VH, Rose TM, Todaro GJ (1995) Molecular cloning and chromosomal localization of a pseudogene related to the human acyl-CoA binding protein/diazepam binding inhibitor. Genomics 25:469–476

    PubMed  CrossRef  CAS  Google Scholar 

  229. Li Y, Hao Y, Owyang C (2000) Diazepam-binding inhibitor mediates feedback regulation of pancreatic secretion and postprandial release of cholecystokinin. J Clin Invest 105:351–359

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  230. Rose TM, Schultz ER, Todaro GJ (1992) Molecular cloning of the gene for the yeast homolog (ACB) of diazepam binding inhibitor/endozepine/acyl-CoA-binding protein. Proc Nat Acad Sci 89:11287–11291

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  231. Gray PW, Glaister D, Seeburg PH, Guidotti A, Costa E (1986) Cloning and expression of cDNA for human diazepam binding inhibitor, a natural ligand of an allosteric regulatory site of the gamma-aminobutyric acid type A receptor. Proc Nat Acad Sci 83:7547–7551

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  232. Haefely W (1984) Benzodiazepine interactions with GABA receptors. Neurosci Lett 47(3):201–206

    PubMed  CrossRef  CAS  Google Scholar 

  233. Shibata T, Ogawa M, Takata N, Matsuda K, Niinobu T, Uda K et al (1987) Distribution of pancreatic secretory trypsin inhibitor in various human tissues and its inactivation in the gastric mucosa. Res Commun Chem Pathol Pharmacol 55(2):243–248

    PubMed  CAS  Google Scholar 

  234. Fushiki T, Fukuoka S, Iwai K (1984) Stimulatory effect of an endogenous peptide in rat pancreatic juice on pancreatic enzyme secretion in the presence of atropine. Biochem Biophys Res Commun 118:532–537

    PubMed  CrossRef  CAS  Google Scholar 

  235. Iwai K, Fukuoka S, Fushiki T, Tsujikawa M, Hirose M, Tsunasawa S, Sakiyama F (1987) Purification and sequencing of a trypsin-sensitive cholecystokinin-releasing peptide from rat pancreatic juice. Its homology with pancreatic secretory trypsin inhibitor. J Biol Chem 262:8956–8959

    PubMed  CAS  Google Scholar 

  236. Kyoko M, Rieko N, Akihiro F, Kenichi K (1989) Stimulatory effect of monitor peptide and human pancreatic secretory trypsin inhibitor on pancreatic secretion and cholecystokinin release in conscious rats. Pancreas 4(2):139–144

    CrossRef  Google Scholar 

  237. Miyasaka K, Funakoshi A, Nakamura R, Kitani K, Uda K, Murata A, Ogawa M (1989) Differences in stimulatory effects between rat pancreatic secretory trypsin inhibitor-61 and -56 on rat pancreas. Japan J Physiol 39(6):891–899

    CrossRef  CAS  Google Scholar 

  238. Graf R, Klauser S, Fukuoka SI, Schiesser M, Bimmler D (2003) The bifunctional rat pancreatic secretory trypsin inhibitor/monitor peptide provides protection against premature activation of pancreatic juice. Pancreatology 3(3):195–206

    PubMed  CrossRef  CAS  Google Scholar 

  239. Hirota M, Ohmuraya M, Baba H (2006) The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 41(9):832–836

    PubMed  CrossRef  CAS  Google Scholar 

  240. Hoffmeister A, Dietz G, Zeitschel U, Mössner J, Rossner S, Stahl T (2009) BACE1 is a newly discovered protein secreted by the pancreas which cleaves enteropeptidase in vitro. JOP 10(5):501–506

    PubMed  Google Scholar 

  241. Uda K-I, Murata A, Nishijima J-I, Doi S, Tomita N, Ogawa M, Mori T (1994) Elevation of circulating monitor peptide/pancreatic secretory trypsin inhibitor-I (PSTI-61) after turpentine-induced inflammation in rats: hepatocytes produce it as an acute phase reactant. J Surg Res 57(5):563–568

    PubMed  CrossRef  CAS  Google Scholar 

  242. Miyasaka K, Funakoshi A (1998) Luminal feedback regulation, monitor peptide, CCK-releasing peptide, and CCK receptors. Pancreas 16(3):277–283

    PubMed  CrossRef  CAS  Google Scholar 

  243. Herzig K-H (1998) Cholecystokinin- and secretin-releasing peptides in the intestine—a new regulatory interendocrine mechanism in the gastrointestinal tract. Regul Pept 73(2):89–94

    PubMed  CrossRef  CAS  Google Scholar 

  244. Song Y, Li P, Lee KY, Chang T, Chey WY (1999) Canine pancreatic juice stimulates the release of secretin and pancreatic secretion in the dog. Am J Physiol 277(3 Pt 1):G731–G735

    PubMed  CAS  Google Scholar 

  245. Li P, Lee KY, Chang T-M, Chey WY (1990) Mechanism of acid-induced release of secretin in ratspresence of a secretin-releasing peptide. J Clin Invest 86:1474–1479

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  246. Chey WY, Chang TM (2003) Neural control of the release and action of secretin. J Physiol Pharmacol 54(4):105–112

    PubMed  Google Scholar 

  247. Mellanby J, Woolley VJ (1912) The ferments of the pancreas: Part I. The generation of trypsin from trypsinogen by enterokinase. J Physiol 45(5):370–388

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  248. Mellanby J, Woolley VJ (1913) The ferments of the pancreas. Part II. The action of calcium salts in the generation of trypsin from trypsinogen. J Physiol 46(2):159–172

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  249. Zamolodchikova TS, Sokolova EA, Aleksandrov SL, Mirgorodskaia OA, Morozov IA, Vorotyntseva TI (1998) Duodenase—a potential activator of cascade of digestive proteases. Bioorg Khim 24(4):300–305

    PubMed  CAS  Google Scholar 

  250. Pletnev VZ, Zamolodchikova TS, Pangborn WA, Duax WL (2000) Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities. Proteins 41(1):8–16

    PubMed  CrossRef  CAS  Google Scholar 

  251. Gaspariana ME, Bobika TV, Kima YV, Ponomarenkoa NA, Dolgikha DA, Gabibova AG, Kirpichnikova MP (2013) Heterogeneous catalysis on the phage surface: display of active human enteropeptidase. Biochimie 95(11):2076–2081

    CrossRef  CAS  Google Scholar 

  252. Shlygin GK (1956) The importance of determining enterokinase and alkaline phosphatase for the assessment of the state of human intestines. Clin Chim Acta 1(5):421–433

    PubMed  CrossRef  CAS  Google Scholar 

  253. Shabalova NP (ed) (2011) Pediatric gastroenterology: a guide for physicians. MEDPress-Inform, Moscow, Russia

    Google Scholar 

  254. Kunitz M (1939) Formation of trypsin from crystalline trypsinogen by means of enterokinase. J Gen Physiol 22(4):429–446

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  255. Light A, Janska H (1989) Enterokinase (enteropeptidase): comparative aspects. Trends Biochem Sci 14(3):110–112

    PubMed  CrossRef  CAS  Google Scholar 

  256. Hooper JD, Clements JA, Quiqley JP, Antalis TM (2001) Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 276(2):857–860

    PubMed  CrossRef  CAS  Google Scholar 

  257. Lu D, Yuan X, Zheng X, Sadler JE (1997) Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain. J Biol Chem 272:31293–31300

    PubMed  CrossRef  CAS  Google Scholar 

  258. McDonald MR, Kunitz M (1941) The effect of calcium and other ions on the autocatalytic formation of trypsin from trypsinogen. J Gen Physiol 25(1):53–73

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  259. Sarkany RP, Moreland BH (1985) Enhancement of the autocatalytic activation of trypsinogen to trypsin by bile and bile acids. Biochim Biophys Acta 839(3):262–267

    PubMed  CrossRef  CAS  Google Scholar 

  260. Holzinger A, Maier EM, Bück C, Mayerhofer PU, Kappler M, Haworth JC et al (2002) Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 70(1):20–25

    PubMed  CrossRef  CAS  Google Scholar 

  261. Hadorn B, Tarlow MJ, Lloyd JK, Wolff OH (1969) Intestinal enterokinase deficiency. Lancet 1(7599):812–813

    PubMed  CrossRef  CAS  Google Scholar 

  262. Holzinger A, Maier EM, Bück C, Mayerhofer PU, Kappler M, Haworth JC et al (2002) Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 70(1):20–25

    PubMed  CrossRef  CAS  Google Scholar 

  263. Ferrone M, Raimondo M, Scolapio JS (2007) Pancreatic enzyme pharmacotherapy. Pharmacotherapy 27(6):910–920

    PubMed  CrossRef  CAS  Google Scholar 

  264. Kuhn RJ, Gelrud A, Munck A, Caras S (2010) 0 CREON (pancrelipase delayed-release capsules) for the treatment of exocrine pancreatic insufficiency. Adv Ther 27(12):895–916

    PubMed  CrossRef  CAS  Google Scholar 

  265. Fieker A, Philpott J, Armand M (2011) Enzyme replacement therapy for pancreatic insufficiency: present and future. Clin Exp Gastroenterol 4:55–73

    PubMed  PubMed Central  Google Scholar 

  266. David WC, Amit B, Katrin B, Suntje S-S, Shufang L, Mahesh F et al (2016) Efficacy and safety of pancrelipase/pancreatin in patients with exocrine pancreatic insufficiency and a medical history of diabetes mellitus. Pancreas 45(5):679–686

    CrossRef  CAS  Google Scholar 

  267. Antonov VK, Vorotyntseva TI, Zamolodchikova TS (1992) Duodenase—a new serine proteinase with unusual specificity. Dokl Akad Nauk 324(6):1318–1322

    PubMed  CAS  Google Scholar 

  268. Zamolodchikova TS, Sokolova EA, Lu D, Sadler JE (2000) Activation of recombinant proenteropeptidase by duodenase. FEBS Lett 466(2–3):295–299

    PubMed  CrossRef  CAS  Google Scholar 

  269. Sanderink GJ, Artur Y, Siest G (1989) Human aminopeptidases: a review of the literature. J Clin Chem Clin Biochem 26(12):795–807

    Google Scholar 

  270. Mucha A, Drag M, Dalton JP, Kafarski P (2010) Metallo-aminopeptidase inhibitors. Biochimie 92(11):1509–1529

    PubMed  CrossRef  PubMed Central  CAS  Google Scholar 

  271. Linderstrøm-Lang K (1929) Über Darmerepsin. Hoppe Seylers Z Physiol Chem 182:151–174

    CrossRef  Google Scholar 

  272. Bradshaw RA (2013) Aminopeptidases. In: Lennarz W, Lane M (eds) Encyclopedia of biological chemistry, 2nd edn. Elsevier, MA, USA

    Google Scholar 

  273. Tsukamoto H, Shibata K, Kajiyama H, Terauchi M, Nawa A, Kikkawa F (2008) BMC Cancer 8:74

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  274. Grdiša M, Vitale L (1991) Types and localization of aminopeptidases in different human blood cells. Int J Biochem 23(3):339–345

    PubMed  CrossRef  Google Scholar 

  275. Sidorowicz W, Jackson GC, Behal FJ (1980) Multiple molecular forms of human pancreas alanine aminopeptidase. Clin Chim Acta 104(2):169–179

    PubMed  CrossRef  CAS  Google Scholar 

  276. Maroux S, Louvard D, Barath J (1973) The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta Enzymol 321(1):282–295

    CrossRef  CAS  Google Scholar 

  277. Magee AI, Grant DA, Hermon-Taylor J (1977) The apparent molecular weights of human intestinal aminopeptidase, enterokinase and maltase in native duodenal fluid. Biochem J 165(3):583–585

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  278. Allen T (1993) Aminopeptidases: structure and function. FASEB J 7(2):290–298

    CrossRef  Google Scholar 

  279. Wickström M, Larsson R, Nygren P, Gullbo J (2011) Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 102(3):501–508

    PubMed  CrossRef  CAS  Google Scholar 

  280. Gu Y-Q, Chao WS, Walling LL (1996) Localization and post-translational processing of the wound-induced leucine aminopeptidase proteins of tomato. J Biological Chem 271:25880–25887

    CrossRef  CAS  Google Scholar 

  281. Thielitz A, Reinhold D, Vetter R, Bank U, Helmuth M, Hartig R et al (2007) Inhibitors of dipeptidyl peptidase IV and aminopeptidase N target major pathogenetic steps in acne initiation. J Invest Dermatol 127(5):1042–1051

    PubMed  CrossRef  CAS  Google Scholar 

  282. Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26(1):88–130

    PubMed  CrossRef  CAS  Google Scholar 

  283. Sapio MR, Fricker LD (2014) Carboxypeptidases in disease: insights from peptidomic studies. Proteomics Clin Appl 8:327–337

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  284. Lyons PJ, Fricker LD (2011) Carboxypeptidase O is a glycosylphosphatidylinositol-anchored intestinal peptidase with acidic amino acid specificity. J Biol Chem 286(45):39023–39032

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  285. Yoshioka M, Erickson RH, Kim YS (1988) Digestion and assimilation of proline-containing peptides by rat intestinal brush border membrane carboxypeptidases. Role of the combined action of angiotensin-converting enzyme and carboxypeptidase P. J Clin Invest 81(4):1090–1095

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  286. Berger J, Schneeman BO (1988) Intestinal zinc and carboxypeptidase A and B activity in response to consumption of test meals containing various proteins by rats. J Nutr 118(6):723–728

    PubMed  CrossRef  CAS  Google Scholar 

  287. Wilcox PE (1970) Chymotrypsinogens – chymotrypsins. Methods Enzymol 19:64–108

    CrossRef  Google Scholar 

  288. Appel W (1986) Chymotrypsin: molecular and catalytic properties. Clin Biochem 19(6):317–322

    PubMed  CrossRef  CAS  Google Scholar 

  289. Gráf L, Szilágyi L, Venekei I (2013) Chymotrypsin. In: Neil RD, Salvesen G (eds) Handbook of proteolytic enzymes. Elsevier, San Diego, CA, USA

    Google Scholar 

  290. Fleming TC, Riddel GH (1961) Studies of the antigenic properties of alpha chymotrypsin. Am J Ophthalmol 51(5):1104/232–1107/235

    CrossRef  Google Scholar 

  291. Vernon HM (1914) The activation of trypsinogen. Biochem J 8(5):494–529

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  292. Vernon HM (1901) The conditions of action of pancreatic rennin and diastase. J Physiol 27(3):174–199

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  293. Bedford T (1951) H. M. Vernon, M.A., M.D. Br J Ind Med 8(2):96–97

    Google Scholar 

  294. Vernon HM (1913) The auto-catalysis of trypsinogen. J Physiol 47(4–5):325–338

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  295. Kunitz M, Northrop JH (1934) The isolation of crystalline trypsinogen and its conversion into crystalline trypsin. Science 80(2083):505–506

    PubMed  CrossRef  CAS  Google Scholar 

  296. Kunitz M, Northrop JH (1934) Autocatalytic activation of trypsinogen in the presence of concentrated ammonium or magnesium sulfate. Science 80(2069):190

    PubMed  CrossRef  CAS  Google Scholar 

  297. Yoosuke T, Shinichi F, Tomoaki M, Kenichi M (1986) Structure of human cholecystokinin gene and its chromosomal location. Gene 50(1–3):353–360

    CrossRef  Google Scholar 

  298. Manchester KL (2004) The crystallization of enzymes and virus proteins: laying to rest the colloidal concept of living systems. Endeavour 28(1):25–29

    PubMed  CrossRef  CAS  Google Scholar 

  299. Kunitz M (1948) Crystallization of salt-free chymotrypsinogen and chymotrypsin from solution in dilute ethyl alcohol. J Gen Physiol 32:265–269

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  300. Kunitz M (1938) Formation of new crystalline enzymes from chymotrypsin, isolation of beta and gamma chymotrypsin. J Gen Physiol 32:207–237

    CrossRef  Google Scholar 

  301. Kunitz M, Northrop J (1935) Crystalline chymotrypsin and chymotrypsinogen. Isolation, crystallization and general properties of a new proteolytic enzyme and its precursor. J Gen Physiol 18:433–458

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  302. Northrop J, Kunitz M, Herriott R (1948) Crystalline enzymes, 2nd edn. Columbia Univ Press, NY, USA

    Google Scholar 

  303. Herriott RM (1989) Moses Kunitz: December 19, 1887–April 20, 1978. Biogr Mem Natl Acad Sci 58:305–317

    PubMed  CAS  Google Scholar 

  304. Koertge N (ed) (2007) New dictionary of scientific biography, 1st edn. Charles Scribners & Sons, Detroit

    Google Scholar 

  305. Fruton GW, Bergmann M (1942) The multiple specificity of chymotrypsin. J Biol Chem 145:253–265

    CAS  Google Scholar 

  306. Jacobsen CF (1947) The activation of chymotrypsin. Compt Rend Tray Lab Carlsberg Ser Chim 25:325–337

    CAS  Google Scholar 

  307. Kato M, Hayakawa S, Naruse S, Kitagawa M, Ishiguro H, Nakae Y, Hayakawa T (1997) Change of pancreatic enzymes, pancreatic stone protein (PSP), and plasma alpha(2)-macroglobulin-trypsin complex-like substance (MTLS) in the activation of pancreatic juice. Pancreas 15(4):345–349

    PubMed  CrossRef  CAS  Google Scholar 

  308. Vendrell J, Guasch A, Coll M, Villegas V, Billeter M, Wider G et al (1992) Pancreatic procarboxypeptidases: their activation processes related to the structural features of the zymogens and activation segments. Biol Chem Hoppe Seyler 373(7):387–392

    PubMed  CrossRef  CAS  Google Scholar 

  309. Ventura S, Gomis-Rüth FX, Puigserver A, Avilés FX, Vendrell J (1997) Pancreatic procarboxypeptidases: oligomeric structures and activation processes revisited. Biol Chem 378(3–4):161–165

    PubMed  CAS  Google Scholar 

  310. Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S et al (2008) Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages. J Biol Chem 283(48):33357–33364

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  311. Andersson E-L, Hernell O, Bläckberg L, Fält H, Lindquist S (2011) BSSL and PLRP2: key enzymes for lipid digestion in the newborn examined using the Caco-2 cell line. J Lipid Res 52(11):1949–1956

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  312. Omar A, Krebs A (1975) An analysis of pancreatic enzymes used in epidermal separation. Arch Dermatol Res 253(2):203–212

    PubMed  CrossRef  CAS  Google Scholar 

  313. Donà F, Houseley J (2014) Unexpected DNA loss mediated by the DNA Binding activity of ribonuclease A. PLoS ONE 9(12):e115008

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  314. Busnardo AC, DiDio LJA, Tidrick RT, Thomford NR (1983) History of the pancreas. Am J Surg 146(5):539–550

    PubMed  CrossRef  CAS  Google Scholar 

  315. Beger HG, Buchler M, Kozarek R, Lerch M, Neoptolemos JP, Warshaw A et al (eds) (2008) The pancreas: an integrated textbook of basic science, medicine, and surgery. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  316. Navarro S (2014) A brief history of the anatomy and physiology of a mysterious and hidden gland called the pancreas. Gastroenterol Hepatol 37:527–534

    PubMed  CrossRef  Google Scholar 

  317. Trevisani F (1983) Ratio and experimentum: Johannes Bohn (1640–1718) and Italian experimental physiology. Clio Med 17(4):199–206

    PubMed  CAS  Google Scholar 

  318. Karamanou M, Koutsilieris M, Laios K, Marineli F, Androutsos G (2014) Apollinaire Bouchardat (1806–1886): founder of modern Diabetology. Hormones 13(2):296–300

    PubMed  CrossRef  Google Scholar 

  319. Chast F (2000) Apollinaire Bouchardat, pharmacist, nutritionist. Ann Pharm Fr 58(6):435–442

    PubMed  CAS  Google Scholar 

  320. Chiray M, Salmon AR, Mercier A (1926) Action of purified secretin on external secretion of pancreas in man. Bull Soc Med Hop Paris 50:1417

    Google Scholar 

  321. Goldstein F, Wirts CW, Cozzolino HJ, Menduke H (1964) Secretin tests of pancreatic and biliary tract disease. Arch Intern Med 114(1):124–131

    PubMed  CrossRef  CAS  Google Scholar 

  322. Burton P, Evans DG, Harper AA, Howath T, Oleesky S, Scott JE, Varley H (1960) A test of pancreatic function in man based on the analysis of duodenal contents after administration of secretin and pancreozymin. Gut 1:111–124

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  323. Sun DC, Shay H (1960) Pancreozymin-secretin test. The combined study of serum enzymes and duodenal contents in the diagnosis of pancreatic disease. Gastroenterology 38:570–581

    PubMed  CAS  Google Scholar 

  324. McGillivray DC, Stordy SN, Bogoch A (1966) The pancreozymin-secretin test after partial gastrectomy. Can Med Assoc J 94(24):1261–1263

    PubMed  PubMed Central  CAS  Google Scholar 

  325. Jorpes EJ, Mutt V (1973) Secretin and cholecystokinin (CCK). In: Jorpes EJ, Mutt V (eds) Secretin, cholecystokinin, pancreozymin and gastrin. Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  326. Wong LT, Turtle S, Davidson AG (1982) Secretin pancreozymin stimulation test and confirmation of the diagnosis of cystic fibrosis. Gut 23(9):744–750

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  327. Mee AS, Girdwood AH, Walker E, Gilinsky NH, Kottler RE, Marks IN (1985) Comparison of the oral (PABA) pancreatic function test, the secretin-pancreozymin test and endoscopic retrograde pancreatography in chronic alcohol induced pancreatitis. Gut 26(11):1257–1262

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  328. Raimondo M, Imoto M, DiMagno EP (2003) Rapid endoscopic secretin stimulation test and discrimination of chronic pancreatitis and pancreatic cancer from disease controls. Clin Gastroenterol Hepatol 1(5):397–403

    PubMed  CrossRef  Google Scholar 

  329. John G, Lieb II, Draganov Peter V (2008) Pancreatic function testing: here to stay for the 21st century. World J Gastroenterol 14(20):3149–3158

    CrossRef  Google Scholar 

  330. Chowdhury RS, Forsmark CE (2003) Pancreatic function testing. Aliment Pharmacol Ther 17:733–750

    PubMed  CrossRef  CAS  Google Scholar 

  331. Malfertheiner P, Büchler M (1989) Correlation of imaging and function in chronic pancreatitis. Radiol Clin North Am 27(1):51–64

    PubMed  CAS  Google Scholar 

  332. Alkaade S, Cem Balci N, Momtahen AJ, Burton F (2008) Normal pancreatic exocrine function does not exclude MRI/MRCP chronic pancreatitis findings. J Clin Gastroenterol 42(8):950–955

    PubMed  CrossRef  Google Scholar 

  333. Moeller DD, Dunn GD, Klotz AP (1972) Comparison of the pancreozymin-secretin test and the Lundh test meal. Am J Digest Dis 17(9):799–805

    PubMed  CrossRef  CAS  Google Scholar 

  334. Burton P, Harper AA, Howat HT, Scott JE, Varley H (1960) The use of cholecystokinin to test gall bladder function in man. Gut 1:193–204

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  335. Lundh G (1962) Pancreatic exocrine function in neoplastic and inflammatory disease; a simple and reliable new test. Gastroenterology 42:275–280

    PubMed  CAS  Google Scholar 

  336. Czakó L, Hajnal F, Németh J, Lonovics J (2000) Assessment of pancreatic enzyme secretory capacity by a modified Lundh test. Int J Pancreatol 27(1):13–19

    PubMed  CrossRef  Google Scholar 

  337. Augarten A, Dubenbaum L, Yahav Y, Katznelson D, Szeinberg A, Blank A, Sack J (1999) Lundh meal: a single non-invasive challenge test for evaluation of exocrine and endocrine pancreatic function in cystic fibrosis patients. Int J Clin Lab Res 29(3):114–116

    PubMed  CrossRef  CAS  Google Scholar 

  338. James O (1973) Progress report: the Lundh test. Gut 14:582–591

    CAS  Google Scholar 

  339. Wong LT, Turtle S, Davidson AG (1982) Secretin pancreozymin stimulation test and confirmation of the diagnosis of cystic fibrosis. Gut 23(9):744–750

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  340. Augarten A, Berman H, Aviram M, Diver-Habber A, Akons H, Ben Tur L et al (2003) Serum CA 19-9 levels as a diagnostic marker in cystic fibrosis patients with borderline sweat tests. Clin Exp Med 3(2):119–123

    PubMed  CrossRef  CAS  Google Scholar 

  341. Fong ZV, Winter JM (2012) Biomarkers in pancreatic cancer: diagnostic, prognostic, and predictive. Cancer J 18(6):530–538

    PubMed  CrossRef  CAS  Google Scholar 

  342. Gullo L, Lucrezio L, Calculli L, Salizzoni E, Coe M, Migliori M et al (2009) Magnetic resonance cholangiopancreatography in asymptomatic pancreatic hyperenzymemia. Pancreas 38(4):396–400

    PubMed  CrossRef  Google Scholar 

  343. Paola T, Raffaele P, Marina M, De Roberto G (2010) A tribute to Lucio Gullo, MD (1938–2009). Pancreas 39(4):423–424

    CrossRef  Google Scholar 

  344. Galassi E, Birtolo C, Migliori M, Bastagli L, Gabusi V, Stanghellini V, De Giorgio R (2014) A 5-year experience of benign pancreatic hyperenzymemia. Pancreas 43(6):874–878

    PubMed  CrossRef  Google Scholar 

  345. Gullo L (2000) Familial pancreatic hyperenzymemia. Pancreas 20(2):158–160

    PubMed  CrossRef  CAS  Google Scholar 

  346. Mariani A (2010) Chronic asymptomatic pancreatic hyperenzymemia: is it a benign anomaly or a disease? JOP. J Pancreas 11(2):95–98

    Google Scholar 

  347. Gullo L, Lucrezio L, Migliori M, Bassi M, Nesticò V, Costa PL (2008) Benign pancreatic hyperenzymemia or Gullo’s syndrome. Adv Med Sci 53(1):1–5

    PubMed  CrossRef  CAS  Google Scholar 

  348. Gullo L, Migliori M (2007) Benign pancreatic hyperenzymemia in children. Eur J Pediatr 166:125–129

    PubMed  CrossRef  Google Scholar 

  349. Gullo L (2007) Day-to-day variations of serum pancreatic enzymes in benign pancreatic hyperenzymemia. Clin Gastroenterol Hepathol 5(1):70–74

    CrossRef  CAS  Google Scholar 

  350. Türkvatan A, Erden A, Türkoğlu MA, Yener Ö (2013) Congenital variants and anomalies of the pancreas and pancreatic duct: imaging by magnetic resonance cholangiopancreaticography and multidetector computed tomography. Korean J Radiol 14(6):905–913

    PubMed  PubMed Central  CrossRef  Google Scholar 

  351. Alexander LF (2012) Congenital pancreatic anomalies, variants, and conditions. Radiol Clin North Am 50(3):487–498

    PubMed  CrossRef  Google Scholar 

  352. Borghei P, Sokhandon F, Shirkhoda A, Morgan DE (2013) Anomalies, anatomic variants, and sources of diagnostic pitfalls in pancreatic imaging. Radiology 266(1):28–36

    PubMed  CrossRef  Google Scholar 

  353. Dinter D, Löhr JM, Neff KW (2007) Bifid tail of the pancreas: benign bifurcation anomaly. AJR Am J Roentgenol 189(5):W251–W253

    PubMed  CrossRef  Google Scholar 

  354. Kanne JP, Rohrmann CA, Lichtenstein JE (2006) Eponyms in radiology of the digestive tract: historical perspectives and imaging appearances. Part 2. Liver, biliary system, pancreas, peritoneum, and systemic disease. Radiographics 26(2):465–480

    PubMed  CrossRef  Google Scholar 

  355. Avisse C, Flament J-B, Delattre J-F (2000) Ampulla of Vater: anatomic, embryologic, and surgical aspects. Surg Clin North Am 80(1):201–212

    PubMed  CrossRef  CAS  Google Scholar 

  356. Kamisawa T, Koike M, Okamoto A (1999) Embryology of the pancreatic duct system. Digestion 60(2):161–165

    PubMed  CrossRef  CAS  Google Scholar 

  357. Kamisawa T, Takuma K, Egawa N, Tsuruta K, Sasaki T (2010) A new embryological theory of the pancreatic duct system. Dig Surg 27(2):132–136

    PubMed  CrossRef  Google Scholar 

  358. Stern CD (1986) A historical perspective on the discovery of the accessory duct of the pancreas, the ampulla of Vater and pancreas divisum. Gut 27:203–212

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  359. Wang D-B, Yu J, Fulcher AS, Turner MA (2013) Pancreatitis in patients with pancreas divisum: Imaging features at MRI and MRCP. World J Gastroenterol 19(30):4907–4916

    PubMed  PubMed Central  CrossRef  Google Scholar 

  360. Largman C, Brodrick JW, Geokas MC (1976) Purification and characterization of two human pancreatic elastases. Biochemistry 15(11):2491–2500

    PubMed  CrossRef  CAS  Google Scholar 

  361. Gonzales AC, Vieira SM, Maurer RL, Silva FA, Silveira TR (2011) Use of monoclonal faecal elastase-1 concentration for pancreatic status assessment in cystic fibrosis patients. J Pediatr (Rio J) 87(2):157–162

    Google Scholar 

  362. Löser C, Möllgaard A, Fölsch UR (1996) Faecal elastase 1: a novel, highly sensitive, and specific tubeless pancreatic function test. Gut 39(4):580–586

    PubMed  PubMed Central  CrossRef  Google Scholar 

  363. Allan BJ, Zager NI, Keller PJ (1970) Human pancreatic proteins: Amylase, proelastase, and trypsinogen. Archiv Biochem Biophys 136(2):529–540

    CrossRef  CAS  Google Scholar 

  364. Shamamian P, Goldberg JD, Ye XY, Stewart JD, White PJ, Gilvarg C (2006) Evaluation of pro-carboxypeptidase A and carboxypeptidase A as serologic markers for adenocarcinoma of the pancreas. HPB (Oxford) 8(6):451–457

    CrossRef  Google Scholar 

  365. Müller CA, Appelros S, Uhl W, Büchler W, Borgström A (2002) Serum levels of procarboxypeptidase B and its activation peptide in patients with acute pancreatitis and non-pancreatic diseases. Gut 51(2):229–235

    PubMed  PubMed Central  CrossRef  Google Scholar 

  366. Kemik O, Kemik AS, Sumer A, Beğenik H, Dülger AC, Purisa S, Tuzun S (2012) Serum procarboxypeptidase A and carboxypeptidase A levels in pancreatic disease. Hum Exp Toxicol 31(5):447–451

    PubMed  CrossRef  CAS  Google Scholar 

  367. Marlow VL, Cianfanelli FR, Porter M, Cairns LS, Dale JK, Stanley-Wall NR (2014) The prevalence and origin of exoprotease-producing cells in the Bacillus subtilis biofilm. Microbiology 160(Pt 1):56–66

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  368. Block H, Maertens B, Spriestersbach A, Kubicek J, Schäfer F (2015) Proteolytic Affinity Tag Cleavage. Methods Enzymol 559:71–97

    PubMed  CrossRef  CAS  Google Scholar 

  369. Villanueva J, Shaffer DR, Philip J, Chaparro CA, Erdjument-Bromage H, Olshen AB et al (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116(1):271–284

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  370. Finlay M-F, McCloud L (1990) Intestinal leucine aminopeptidase and alkaline phosphatase: Genetic regulation and development in mice. Biochem Genet 28(5–6):267–281

    PubMed  CrossRef  CAS  Google Scholar 

  371. Stefanovic V, Vlahovic P, Ardaillou N, Ronco P, Ardaillou R (1992) Cell surface aminopeptidase A and N activities in human glomerular epithelial cells. Kidney Int 41:1571–1580

    PubMed  CrossRef  CAS  Google Scholar 

  372. Shapiro LH, Ashmun RA, Roberts WM, Look AT (1991) Separate promoters control transcription of the human aminopeptidase N gene in myeloid and intestinal epithelial cells. J Biol Chem 266(18):11999–12007

    PubMed  CAS  Google Scholar 

  373. Nitta S, Komatsu A, Ishii T, Iwamoto H, Numata K (2016) Synthesis of peptides with narrow molecular weight distributions via exopeptidase-catalyzed aminolysis of hydrophobic amino-acid alkyl esters. Polym J 48:955–961

    CrossRef  CAS  Google Scholar 

  374. Stressler T, Ewert J, Merz M, Funk J, Claaßen W, Lutz-Wahl S et al (2016) A novel glutamyl (aspartyl)-specific aminopeptidase a from Lactobacillus delbrueckii with promising properties for application. PLoS ONE 11(3):e0152139

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  375. Gomez S, Gluschankof P, Lepage A, Cohen P (1988) Relationship between endo- and exopeptidases in a processing enzyme system: activation of an endoprotease by the aminopeptidase B-like activity in somatostatin-28 convertase. Proc Natl Acad Sci U S A 85(15):5468–5472

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  376. Yang W (2011) Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44(1):1–93

    PubMed  CrossRef  CAS  Google Scholar 

  377. Dhananjaya BL, Souza DCJ (2010) An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochemistry (Mosc) 75(1):1–6

    CrossRef  CAS  Google Scholar 

  378. Tolun G, Myers RS (2003) A real-time DNase assay (ReDA) based on PicoGreen® fluorescence. Nucleic Acids Res 31(18):e111

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  379. Liu Y, Zhang Y, Dong P, An R, Xue C, Ge Y et al (2015) Digestion of nucleic acids starts in the stomach. Sci Rep 5:11936

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  380. Seno M, Futami J, Kosaka M, Seno S, Yamada H (1994) Nucleotide sequence encoding human pancreatic ribonuclease. Biochim Biophys Acta 1218(3):466–468

    PubMed  CrossRef  CAS  Google Scholar 

  381. Baril E, Mitchener J, Lee L, Baril B (1977) Action of pancreatic DNase: requirements for activation of DNA as a template-primer for DNA polymerase. Nucleic Acids Res 4(8):2641–2653

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  382. Zhu B, Zhang L, Zhang Y-Y, Wang L, Li X-G, Liu T et al (2016) DNase I aggravates islet β-cell apoptosis in type 2 diabetes. Mol Med Rep 13(6):4577–4584

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  383. Fernández-Zapico ME (2010) Never conclude with a negative result, explore all possibilities before changing your hypothesis: an interview with Dr. Catherine Figarella, Former Director Groupe de Recherche sur lesGlandes Exocrines, Faculté de Médecine, Marseille, France; Active Member of the Board ofthe French Cystic Fibrosis Association: Vaincre la Mucoviscidose. Pancreatology 10:109–111

    CrossRef  Google Scholar 

  384. Ryan JW, Moffat JG, Thompson AG (1964) Role of bradykinin in the development of acute pancreatitis. Nature 204:1212–1213

    PubMed  CrossRef  CAS  Google Scholar 

  385. Goldberg RF, Austen WG Jr, Zhang X, Munene G, Mostafa G, Biswas S et al (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A 105(9):3551–3556

    PubMed  PubMed Central  CrossRef  Google Scholar 

  386. Lallès J-P (2014) Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 72(2):82–94

    PubMed  CrossRef  Google Scholar 

  387. Whyte MP (2010) Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann NY Acad Sci 1192:190–200

    PubMed  CrossRef  CAS  Google Scholar 

  388. Millán JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98:398–416

    PubMed  CrossRef  CAS  Google Scholar 

  389. Argiles JM, Lopez-Soriano FJ (1990) Intestinal amino acid transport: an overview. Int J Biochem 22(9):931–937

    PubMed  CrossRef  CAS  Google Scholar 

  390. Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447(5):610–618

    PubMed  CrossRef  CAS  Google Scholar 

  391. Reimer RJ, Edwards RH (2004) Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch 447(5):629–635

    PubMed  CrossRef  CAS  Google Scholar 

  392. Eiden LE, Schafer MK, Weihe E, Schutz B (2004) The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Arch 447(5):636–640

    PubMed  CrossRef  CAS  Google Scholar 

  393. Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447(5):689–709

    PubMed  CrossRef  CAS  Google Scholar 

  394. Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447(5):710–721

    PubMed  CrossRef  CAS  Google Scholar 

  395. Gasnier B (2004) The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch 447(5):752–755

    CrossRef  CAS  Google Scholar 

  396. Boll M, Daniel H, Gasnier B (2004) The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis family. Pflugers Arch 447(5):776–779

    PubMed  CrossRef  CAS  Google Scholar 

  397. Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447(5):784–795

    PubMed  CrossRef  CAS  Google Scholar 

  398. Munck LK (1995) Chloride dependent amino acid transport in the human small intestine. Gut 36:215–219

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  399. Jenstad M, Chaudhry FA (2013) The amino acid transporters of the glutamate/GABA-glutamine cycle and their impact on insulin and glucagon secretion. Front Endocrinol 4:199

    CrossRef  Google Scholar 

  400. Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88(1):249–286

    PubMed  CrossRef  CAS  Google Scholar 

  401. Reimer RJ, Chaudhry FA, Gray AT, Edwards RH (2000) Amino acid transport system A resembles system N in sequence but differs in mechanism. PNAS 97(14):7715–7720

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  402. Boudko DY (2012) Molecular basis of essential amino acid transport from studies of insect nutrient amino acid transporters of the SLC6 family (NAT-SLC6). J Insect Physiol 58(4):433–449

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  403. Wagner CA, Lang F, Bröer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281(4):C1077–C1093

    PubMed  CrossRef  CAS  Google Scholar 

  404. Oxender DL, Christensen HN (1963) Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. J Biol Chem 238:3686–3699

    PubMed  CAS  Google Scholar 

  405. Kekuda R, Prasad PD, Fei YJ, Torres-Zamorano V, Sinha S, Yang-Feng TL et al (1996) Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter Bo from a human placental choriocarcinoma cell line. J Biol Chem 271(31):18657–18661

    PubMed  CrossRef  CAS  Google Scholar 

  406. Kekuda R, Torres-Zamorano V, Fei YJ, Prasad PD, Li HW, Mader LD et al (1997) Molecular and functional characterization of intestinal Na(+)-dependent neutral amino acid transporter B0. Am J Physiol 272(6 Pt 1):G1463–G1472

    PubMed  CAS  Google Scholar 

  407. Pochini L, Scalise M, Galluccio M, Indiveri C (2014) Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health. Front Chem 2:61

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  408. Baerlocher KE, Scriver CR, Mohyuddin F (1970) Ontogeny of iminoglycine transport in mammalian kidney. Proc Natl Acad Sci U S A 65(4):1009–1016

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  409. Revsin B, Morrow G 3rd (1979) Imino acid transport in human diploid fibroblasts. Exp Cell Res 119(1):55–61

    PubMed  CrossRef  CAS  Google Scholar 

  410. Gilbert ER, Wong EA, Webb KE Jr (2008) Board-invited review: Peptide absorption and utilization: implications for animal nutrition and health. J Anim Sci 86(9):2135–2155

    PubMed  CrossRef  CAS  Google Scholar 

  411. Mordrelle A, Jullian E, Costa C, Cormet-Boyaka E, Benamouzig R, Tomé D, Huneau J-F (2000) EAAT1 is involved in transport of L-glutamate during differentiation of the Caco-2 cell line. Am J Physiol Gastrointest Liver Physiol 279(2):G366–G373

    PubMed  CrossRef  CAS  Google Scholar 

  412. Vermeulen MAR, de Jong J, Vaessen MJ, van Leeuwen PAM, Houdijk APJ (2011) Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity. World J Gastroenterol 17(12):1569–1573

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  413. Mariotta L, Ramadan T, Singer D, Guetg A, Herzog B, Stoeger C et al (2012) T-type amino acid transporter TAT1 (Slc16a10) is essential for extracellular aromatic amino acid homeostasis control. J Physiol 590(24):6413–6424

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  414. Ramadan T, Camargo SM, Herzog B, Bordin M, Pos KM, Verrey F (2007) Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger. Pflugers Arch 454(3):507–516

    PubMed  CrossRef  CAS  Google Scholar 

  415. Fraga S, Pinho M, Soares-da-Silva P (2005) Expression of LAT1 and LAT2 amino acid transporters in human and rat intestinal epithelial cells. Amino Acids 29(3):229–233

    PubMed  CrossRef  CAS  Google Scholar 

  416. Bröer A, Wagner CA, Lang F, Bröer S (2000) The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 349(3):787–795

    PubMed  PubMed Central  CrossRef  Google Scholar 

  417. Pfeiffer R, Rossier G, Spindler B, Meier C, Kühn L, Verrey F (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18(1):49–57

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  418. Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kühn LC (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274(49):34948–34954

    PubMed  CrossRef  CAS  Google Scholar 

  419. Bröer A, Friedrich B, Wagner CA, Fillon S, Ganapathy V, Lang F, Bröer S (2001) Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains. Biochem J 355(3):725–731

    PubMed  PubMed Central  CrossRef  Google Scholar 

  420. del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35(3):161–174

    PubMed  CrossRef  CAS  Google Scholar 

  421. Eggermann T, Venghaus A, Zerres K (2012) Cystinuria: an inborn cause of urolithiasis. Orphanet J Rare Dis 7:19

    PubMed  PubMed Central  CrossRef  Google Scholar 

  422. Claes DJ, Jackson E (2012) Cystinuria: mechanisms and management. Pediatr Nephrol 27(11):2031–2038

    PubMed  CrossRef  Google Scholar 

  423. Tahmoush AJ, Alpers DH, Feigin RD, Armbrustmacher V, Prensky AL (1976) Hartnup disease. Clinical, pathological, and biochemical observations. Arch Neurol 33(12):797–807

    PubMed  CrossRef  CAS  Google Scholar 

  424. Garcia ML, Benavides J, Valdivieso F (1980) Ketone body transport in renal brush border membrane vesicles. Biochim Biophys Acta Biomembr 600(3):922–930

    CrossRef  CAS  Google Scholar 

  425. Ding F, Yao J, Rettberg JR, Chen S, Brinton RD (2013) Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS ONE 8(11):e79977

    PubMed  CrossRef  CAS  Google Scholar 

  426. Prins ML (2012) Cerebral ketone metabolism during development and injury. Epilepsy Res 100(3):218–223

    PubMed  CrossRef  CAS  Google Scholar 

  427. de Romo AC (1989) Tallow and the time capsule: Claude Bernard’s discovery of the pancreatic digestion of fat. Hist Philos Life Sci 11(2):253–274

    PubMed  Google Scholar 

  428. Kim S-H, Park I-H, Lee S-C, Lee Y-S, Yi Z, Kim TO et al (2008) Discovery of three novel lipase (lipA1, lipA2, and lipA3) and lipase-specific chaperone (lipB) genes present in Acinetobacter sp. DYL129. Appl Microbiol Biotechnol 77(5):1041–1051

    PubMed  CrossRef  CAS  Google Scholar 

  429. Kim H-K, Lee J-K, Kim H, Oh T-K (1996) Characterization of an alkaline lipase from Proteus vulgaris K80 and the DNA sequence of the encoding gene. FEMS Microbiol Lett 135(1):117–121

    PubMed  CrossRef  CAS  Google Scholar 

  430. Kok RG, van Thor JJ, Nugteren-Roodzant IM, Brouwer MBW, Egmond MR, Nudel CB et al (1995) Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene. Mol Microbiol 15(5):803–818

    PubMed  CrossRef  CAS  Google Scholar 

  431. Johnston FA Jr, Sell HM (1944) Changes in chemical composition of tung kernels during germination. Plant Physiol 19(4):694–698

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  432. Lowe ME, Rosenblum JL, Strauss AW (1989) Cloning and characterization of human pancreatic lipase cDNA. J Biol Chem 264(33):20042–20048

    PubMed  CAS  Google Scholar 

  433. Lowe ME (1994) Pancreatic triglyceride lipase and colipase: insights into dietary fat digestion. Gastroenterology 107(5):1524–1536

    PubMed  CrossRef  CAS  Google Scholar 

  434. Gargouri Y, Pieroni G, Moreau H, Ferrato F, Rivière C, Saunière JF et al (1986) Lipases of the digestive system. Reprod Nutr Dev 26(5B):1163–1176

    PubMed  CrossRef  CAS  Google Scholar 

  435. Douglas GJ Jr, Reinauer AJ, Brooks WC, Pratt JH (1953) The effect on digestion and absorption of excluding the pancreatic juice from the intestine. Gastroenterology 23(3):452–459

    PubMed  CAS  Google Scholar 

  436. Bank S, Krut LH, Marks IN, Bronte-Stewart B, Uys PJ (1964) Hydrolysis of fat by human gastric juice. Gut 5(5):480–484

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  437. Darnton SJ, Barrowman J (1969) A specific histochemical method for the determination of pancreatic lipase. Histochem J 1(6):551–557

    PubMed  CrossRef  CAS  Google Scholar 

  438. Hamosh M, Clary TR, Chernick SS, Scow RO (1970) Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim Biophys Acta 210(3):473–482

    PubMed  CrossRef  CAS  Google Scholar 

  439. Baskys B, Klein E, Lever WF (1963) Lipases of blood and tissue. Purification and properties of pancreatic lipase. Arch Biochem Biophys 102:201–209

    PubMed  CrossRef  CAS  Google Scholar 

  440. Cohen M, Morgan RG, Hofmann AF (1971) Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60(1):1–15

    PubMed  CAS  Google Scholar 

  441. Barrowman JA, Darnton SJ (1970) The lipase of rat gastric mucosa. A histochemical demonstration of the enzymatic activity against a medium chain triglyceride. Gastroenterology 59:13–21

    PubMed  CAS  Google Scholar 

  442. Hamosh M, Scow RO (1973) Lingual lipase and its role in the digestion of dietary lipid. J Clin Invest 52:88–95

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  443. Newman L, Haryono R, Keast R (2013) Functionality of fatty acid chemoreception: a potential factor in the development of obesity? Nutrients 5(4):1287–1300

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  444. Hayes JR, Pence DH, Scheinbach S, D’Amelia RP, Klemann LP, Wilson NH, Finley JW (1994) Review of triacylglycerol digestion, absorption, and metabolism with respect to Salatrim triacylglycerols. J Agric Food Chem 42(2):474–483

    CrossRef  CAS  Google Scholar 

  445. Voigt N, Stein J, Galindo MM, Dunkel A, Raguse JD, Meyerhof W et al (2014) The role of lipolysis in human orosensory fat perception. J Lipid Res 55(5):870–882

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  446. Turki S, Kallel H (2012) Emerging approaches for the treatment of fat malabsorption due toexocrine pancreatic insufficiency. In: Brzozowski T (ed) New advances in the basic and clinical gastroenterology. InTech, Rijeka, Croatia

    Google Scholar 

  447. Fink CS, Hamosh P, Hamosh M (1984) Fat digestion in the stomach: stability of lingual lipase in the gastric environment. Pediatr Res 18(3):248–254

    PubMed  CrossRef  CAS  Google Scholar 

  448. Moreau H, Bernadac A, Gargouri Y, Benkouka F, Laugier R, Verger R (1989) Immunocytolocalization of human gastric lipase in chief cells of the fundic mucosa. Histochemistry 91(5):419–423

    PubMed  CrossRef  CAS  Google Scholar 

  449. Hamosh M (1990) Lingual and gastric lipases. Nutrition 6(6):421–428

    CAS  PubMed  Google Scholar 

  450. Kawai T, Fushiki T (2003) Importance of lipolysis in oral cavity for orosensory detection of fat. Am J Physiol Regul Integr Comp Physiol 285(2):R447–R454

    PubMed  CrossRef  CAS  Google Scholar 

  451. Sedlakova A, Kohút A, Sarisský M (2001) Changes of gastric lipase activity after ethanol and indomethacin administration: influence of pretreatment with allopurinol, pentoxifylline and L-DOPA. Physiol Res 50:299–307

    PubMed  CAS  Google Scholar 

  452. DeNigris SJ, Hamosh M, Kasbekar DK, Lee TC, Hamosh P (1988) Lingual and gastric lipases: species differences in the origin of prepancreatic digestive lipases and in the localization of gastric lipase. Biochim Biophys Acta Lipids Lipid Metab 959(1):38–45

    CrossRef  CAS  Google Scholar 

  453. Carrière F, Grandval P, Gregory PC, Renou C, Henniges F, Sander-Struckmeier S, Laugier R (2005) Does the pancreas really produce much more lipase than required for fat digestion? JOP 6(3):206–215

    PubMed  Google Scholar 

  454. Park M-J, Lin L, Thomas S, Braymer HD, Smith PM, Harrison DHT, York DA (2004) The F1-ATPase β-subunit is the putative enterostatin receptor. Peptides 25(12):2127–2133

    PubMed  CrossRef  CAS  Google Scholar 

  455. Dittrich M, Schulten K (2005) Zooming in on ATP hydrolysis in F1. J Bioenerg Biomembr 37:441–444

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  456. Dittrich M, Hayashi S, Schulten K (2004) ATP hydrolysis in the bTP and bDP catalytic sites of F1-ATPase. Biophys J 87:2954–2967

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  457. Dittrich M, Hayashi S, Schulten K (2003) On the mechanism of ATP hydrolysis in F1-ATPase. Biophys J 85:2253–2266

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  458. Lin L, Park M, York DA (2007) Enterostatin inhibition of dietary fat intake is modulated through the melanocortin system. Peptides 28(3):643–649

    PubMed  CrossRef  CAS  Google Scholar 

  459. Park M-J, Farrell J, Lemmon K, York DA (2009) Enterostatin alters protein trafficking to inhibit insulin secretion in Beta-TC6 cells. Peptides 30(10):1866–1873

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  460. Berger K, Winzell MS, Mei J, Erlanson-Albertsson C (2004) Enterostatin and its target mechanisms during regulation of fat intake. Physiol Behav 83(4):623–630

    PubMed  CrossRef  CAS  Google Scholar 

  461. Davis RC, Xia YR, Mohandas T, Schotz MC, Lusis AJ (1991) Assignment of the human pancreatic colipase gene to chromosome 6p21.1 to pter. Genomics 10(1):262–265

    PubMed  CrossRef  CAS  Google Scholar 

  462. Rosenheim O (1910) On pancreatic lipase. The separation of lipase from its co-enzyme. J Physiol 15:14–16

    Google Scholar 

  463. King H (1956) Sigmund Otto Rosenheim. 1871–1955. Biogr Mem Fellows R Soc 2:256–267

    CrossRef  Google Scholar 

  464. Maylie MF, Charles M, Cache C, Desnuelle P (1971) Isolation and partial identification of a pancreatic colipase. Biochim Biophys Acta 229:286–289

    PubMed  CrossRef  CAS  Google Scholar 

  465. Borgstrom B, Erlanson-Albertsson C, Wieloch T (1979) Pancreatic colipase: chemistry and physiology. J Lipid Res 20(7):805–816

    PubMed  CAS  Google Scholar 

  466. van Tilbeurgh H, Bezzine S, Cambillau C, Verger R, Carrière F (1999) Colipase: structure and interaction with pancreatic lipase. Biochim Biophys Acta Mol Cell Biol Lipids 1441(2–3):173–184

    CrossRef  Google Scholar 

  467. Crandall WV, Lowe ME (2001) Colipase residues Glu64 and Arg65 are essential for normal lipase-mediated fat digestion in the presence of bile salt micelles. J Biol Chem 276(16):12505–12512

    PubMed  CrossRef  CAS  Google Scholar 

  468. Chapus C, Rovery M, Sarda L, Verger R (1988) Minireview on pancreatic lipase and colipase. Biochimie 70(9):1223–1234

    PubMed  CrossRef  CAS  Google Scholar 

  469. Bezzine S, Ferrato F, Ivanova MG, Lopez V, Verger R, Carrière F (1999) Human pancreatic lipase: colipase dependence and interfacial binding of lid domain mutants. Biochemistry 38(17):5499–5510

    PubMed  CrossRef  CAS  Google Scholar 

  470. John S, Thangapandian S, Sakkiah S, Lee KW (2010) Discovery of potential pancreatic cholesterol esterase inhibitors using pharmacophore modelling, virtual screening, and optimization studies. J Enzyme Inhib Med Chem 26(4):535–545

    PubMed  CrossRef  CAS  Google Scholar 

  471. Karmanskiĭ IM, Pichugin AL, Iusupova GI, Sysoev IuA (1981) Isolation of cholesterol esterase from the pancreatic juice of dogs. Biull Eksp Biol Med 91(3):330–332

    PubMed  CrossRef  Google Scholar 

  472. Heidrich JE, Contos LM, Hunsaker LA, Deck LM, Vander Jagt DL (2004) Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster. BMC Pharmacol 4:5

    PubMed  PubMed Central  CrossRef  Google Scholar 

  473. Hui TY, Bernlohr DA (1997) Fatty acid transporters in animal cells. Front Biosci 2:d222–d231

    PubMed  CrossRef  CAS  Google Scholar 

  474. Tso P, Fujimoto K (1991) The absorption and transport of lipids by the small intestine. Brain Res Bull 27(3–4):477–482

    PubMed  CrossRef  CAS  Google Scholar 

  475. Orsavova J, Misurcova L, Ambrozova J, Vicha R, Mlcek J (2015) Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci 16:12871–12890

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  476. Food and Agriculture Organization of the United Nations. Food and Agriculture Organization of the United Nations (FAO) (2017) Oilcrops complex: policy changes and industry measures, Annual compendium 2016. FAO, Roma

    Google Scholar 

  477. Food and Agriculture Organization of the United Nations (FAO) (2017) Food outlook: biannual report on global food markets. FAO, Rome

    Google Scholar 

  478. US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory (2015) USDA national nutrient database for standard reference. United States, Washington, DC

    Google Scholar 

  479. McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology (the gold book), 2nd edn. International Union of Pure and Applied Chemistry (IUPAC) Compendium of Chemical Terminology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  480. Park J-M, Kim N-K, Yang C-Y, Moon K-W, Kim J-M (2014) Determination of the authenticity of dairy products on the basis of fatty acids and triacylglycerols content using GC analysis. Korean J Food Sci Anim Resour 34(3):316–324

    PubMed  PubMed Central  CrossRef  Google Scholar 

  481. Gupta SV, Yamada N, Fungwe TV, Khosla P (2003) Replacing 40% of dietary animal fat with vegetable oil is associated with lower HDL cholesterol and higher cholesterol ester transfer protein in cynomolgus monkeys fed sufficient linoleic acid. J Nutr 133(8):2600–2606

    PubMed  CrossRef  CAS  Google Scholar 

  482. Kim JM, Kim HJ, Park JM (2015) Determination of milk fat adulteration with vegetable oils and animal fats by gas chromatographic analysis. J Food Sci 80(9):C1945–C1951

    PubMed  CrossRef  CAS  Google Scholar 

  483. Klonoff DC (2007) Replacements for trans fats—will there be an oil shortage? J Diabetes Sci Technol 1(3):415–422

    PubMed  PubMed Central  CrossRef  Google Scholar 

  484. Liao TH, Hamosh P, Hamosh M (1984) Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine. Pediatr Res 18(5):402–409

    PubMed  CrossRef  CAS  Google Scholar 

  485. Phan CT, Tso P (2001) Intestinal lipid absorption and transport. Front Biosci 6:D299–D319

    PubMed  CrossRef  CAS  Google Scholar 

  486. Drent ML, van der Veen EA (1993) Lipase inhibition: a novel concept in the treatment of obesity. Int J Obes Relat Metab Disord 17(4):241–244

    PubMed  CAS  Google Scholar 

  487. Nelson RH, Miles JM (2005) The use of orlistat in the treatment of obesity, dyslipidaemia and Type 2 diabetes. Expert Opin Pharmacother 6(14):2483–2491

    PubMed  CrossRef  CAS  Google Scholar 

  488. Dickerson LM, Carek PJ (2000) Drug therapy for obesity. Am Fam Physician 61(7):2131–2138

    PubMed  CAS  Google Scholar 

  489. Wang TY, Liu M, Portincasa P, Wang DQ-H (2013) New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest 43(11):1203–1223

    PubMed  PubMed Central  CAS  Google Scholar 

  490. Harrison EH (2012) Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta 1821(1):70–77

    PubMed  CrossRef  CAS  Google Scholar 

  491. Iqbal J, Hussain MM (2009) Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296:E1183–E1194

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  492. Goncalves A, Gontero B, Nowicki M, Margier M, Masset G, Amiot M-J, Reboul E (2015) Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. J Lipid Res 56(6):1123–1133

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  493. Mansbach CM 2nd, Cohen RS, Leff PB (1975) Isolation and properties of the mixed lipid micelles present in intestinal content during fat digestion in man. J Clin Invest 56(4):781–791

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  494. Abrahamse E, Minekus M, van Aken GA, van de Heijning B, Knol J, Bartke N et al (2012) Development of the digestive system—experimental challenges and approaches of infant lipid digestion. Food Dig 3(1–3):63–77

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  495. Dejgaard SY, Presley JF (2014) New automated single-cell technique for segmentation and quantitation of lipid droplets. J Histochem Cytochem 62(12):889–901

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  496. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685

    CrossRef  CAS  PubMed  Google Scholar 

  497. St-Onge M-P, Jones PJH (2002) Physiological effects of medium-chain triglycerides: potential agents in the prevention of obesity. J Nutr 132(3):329–332

    PubMed  CrossRef  CAS  Google Scholar 

  498. Hardy SC, Tanpowpong P, Kleinman RE (2014) Nutrition in children with liver disease: evaluation and management. In: Murray K, Horslen S (eds) Diseases of the liver in children. Springer, New York

    Google Scholar 

  499. Ziarnik E, Nesbitt J (2015) Chyle leak after esophageal surgery. In: Pawlik T, Maithel S, Merchant N (eds) Gastrointestinal surgery. Springer, New York

    Google Scholar 

  500. Mattes RD (2009) Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses 34(2):145–150

    PubMed  CrossRef  CAS  Google Scholar 

  501. Senior JR (1964) Intestinal absorption of fats. J Lipid Res 5:495–521

    PubMed  CAS  Google Scholar 

  502. Kirat D, Kato S (2006) Monocarboxylate transporter 1 (MCT1) mediates transport of short-chain fatty acids in bovine caecum. Exp Physiol 91(5):835–844

    PubMed  CrossRef  CAS  Google Scholar 

  503. Sellin JH, De Soignie R (1998) Short-chain fatty acids have polarized effects on sodium transport and intracellular pH in rabbit proximal colon. Gastroenterology 114(4):737–747

    PubMed  CrossRef  CAS  Google Scholar 

  504. Kirat D, Masuoka J, Hayashi H, Iwano H, Yokota H, Taniyama H, Kato S (2006) Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. J Physiol 576(2):635–647

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  505. Nedjadi T (2014) Trans-cellular transport of short chain fatty acids in the large intestine. BMC Genom 15(2):P4

    CrossRef  Google Scholar 

  506. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    CrossRef  CAS  Google Scholar 

  507. Abumrad NA, Davidson NO (2012) Role of the gut in lipid homeostasis. Physiol Rev 92(3):1061–1085

    PubMed  CrossRef  CAS  Google Scholar 

  508. D’Aquila T, Hung Y-H, Carreiro A, Buhman KK (2016) Recent discoveries on absorption of dietary fat: presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta 1861(8):730–747

    CrossRef  CAS  Google Scholar 

  509. Uchida A, Lee HJ, Cheng JX, Buhman KK (2013) Imaging cytoplasmic lipid droplets in enterocytes and assessing dietary fat absorption. Methods Cell Biol 116:151–166

    PubMed  CrossRef  CAS  Google Scholar 

  510. Schwenk RW, Dirkx E, Coumans WA, Bonen A, Klip A, Glatz JFC, Luiken JJFP (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53:2209–2219

    PubMed  CrossRef  CAS  Google Scholar 

  511. Abumrad N, Harmon C, Ibrahimi A (1998) 0 Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 39:2309–2318

    PubMed  CAS  Google Scholar 

  512. Kazantzis M, Stahl A (2012) Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta Mol Cell Biol Lipids 1821(5): 852–857

    CrossRef  CAS  Google Scholar 

  513. Glatz JFC, Luiken JJFP, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417

    PubMed  CrossRef  CAS  Google Scholar 

  514. Shim J, Moulson CL, Newberry EP, Lin M-H, Xie Y, Kennedy SM et al (2009) Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J Lipid Res 50(3):491–500

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  515. Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M, Kuwahara A (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30(3):149–156

    PubMed  CrossRef  CAS  Google Scholar 

  516. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(2):251–262

    PubMed  Google Scholar 

  517. Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N (2013) Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol 13(6):869–874

    PubMed  CrossRef  CAS  Google Scholar 

  518. Moschen I, Bröer A, Galić S, Lang F, Bröer S (2012) Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT). Neurochem Res 37(11):2562–2568

    PubMed  CrossRef  CAS  Google Scholar 

  519. Davis HR Jr, Altmann SW (2009) Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta Mol Cell Biol Lipids 1791(7):679–683

    CrossRef  CAS  Google Scholar 

  520. Kramer W, Girbig F, Corsiero D, Pfenninger A, Frick W, Jähne G et al (2005) Aminopeptidase N (CD13) is a molecular target of the cholesterol absorption inhibitor ezetimibe in the enterocyte brush border membrane. J Biol Chem 280:1306–1320

    PubMed  CrossRef  CAS  Google Scholar 

  521. Bays HE, Neff D, Tomassini JE, Tershakovec AM (2008) Ezetimibe: cholesterol lowering and beyond. Expert Rev Cardiovasc Ther 6(4):447–470

    PubMed  CrossRef  CAS  Google Scholar 

  522. Fraunberger P, Gröne E, Gröne HJ, Drexel H, Walli AK (2017) Ezetimibe reduces cholesterol content and NF-kappaB activation in liver but not in intestinal tissue in guinea pigs. J Inflamm (Lond) 14:3

    CrossRef  CAS  Google Scholar 

  523. Le NA, Tomassini JE, Tershakovec AM, Neff DR, Wilson PW (2015) Effect of switching from statin monotherapy to ezetimibe/simvastatin combination therapy compared with other intensified lipid-lowering strategies on lipoprotein subclasses in diabetic patients with symptomatic cardiovascular disease. J Am Heart Assoc 4(10):e001675

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  524. Reboul E, Borel P (2011) Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 50(4):388–402

    PubMed  CrossRef  CAS  Google Scholar 

  525. Ueshima K, Akihisa-Umeno H, Sawada M, Nagayoshi A, Ozaki T, Takakura S, Manda T, Mutoh S (2004) Possible involvement of enhanced intestinal microsomal triglyceride transfer protein (MTP) gene expression in acceleration of lipid absorption by a western-type diet in apolipoprotein E knockout mice. Life Sci 76(2):179–190

    PubMed  CrossRef  CAS  Google Scholar 

  526. Swift LL, Kakkad B, Boone C, Jovanovska A, Jerome WG, Mohler PJ, Ong DE (2005) Microsomal triglyceride transfer protein expression in adipocytes: a new component in fat metabolism. FEBS Lett 579(14):3183–3189

    PubMed  CrossRef  CAS  Google Scholar 

  527. Beierfuß A, Dietrich H, Kremser C, Hunjadi M, Ritsch A, Rülicke T et al (2017) Knockout of apolipoprotein E in rabbit promotes premature intervertebral disc degeneration: a new in vivo model for therapeutic approaches of spinal disc disorders. PLoS ONE 12(11):e0187564

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  528. Wetterau JR, Lin MC, Jamil H (1997) Microsomal triglyceride transfer protein. Biochim Biophys Acta 1345:136–150

    PubMed  CrossRef  CAS  Google Scholar 

  529. Havel RJ (1995) Chylomicron remnants: hepatic receptors and metabolism. Curr Opin Lipidol 6(5):312–316

    PubMed  CrossRef  CAS  Google Scholar 

  530. Feingold KR, Grunfeld C (2000) Introduction to lipids and lipoproteins. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM et al (eds) Endotext [Internet]. MDText.com Inc, South Dartmouth

    Google Scholar 

  531. Röhrl C (1831) Stangl H (2013) HDL endocytosis and resecretion. Biochim Biophys Acta 11:1626–1633

    Google Scholar 

  532. Boateng L, Ansong R, Owusu WB, Steiner-Asiedu M (2016) Coconut oil and palm oil’s role in nutrition, health and national development: a review. Ghana Med J 50(3):189–196

    PubMed  PubMed Central  Google Scholar 

  533. Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L et al (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12(3):829–875

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  534. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204(3):274–308

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  535. Larsen EH (2002) Hans H. Ussing–scientific work: contemporary significance and perspectives. Biochim Biophys Acta Biomembr 1566(1–2):2–15

    CrossRef  CAS  Google Scholar 

  536. Lindemann B (2001) Hans Ussing, experiments and models. J Membr Biol 184(3):203–210

    PubMed  CrossRef  CAS  Google Scholar 

  537. Hamilton KL (2011) Ussing’s “little chamber”: 60 years + old and counting. Front Physiol 2:6

    PubMed  PubMed Central  CrossRef  Google Scholar 

  538. Larsen EH (2009) Hans Henriksen Ussing. 30 December 1911–22 December 2000. Biogr Mems Fellows R Soc 55:305–335

    Google Scholar 

  539. Coetzer H, Claassen N, van Papendorp DH, Kruger MC (1994) Calcium transport by isolated brush border and basolateral membrane vesicles: role of essential fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids 50(5):257–266

    PubMed  CrossRef  CAS  Google Scholar 

  540. Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds) (2011) Dietary reference intakes for calcium and vitamin D. National Academies Press, Washington

    Google Scholar 

  541. Wasserman RH, Chandler JS, Meyer SA, Smith CA, Brindak ME, Fullmer CS et al (1992) Intestinal calcium transport and calcium extrusion processes at the basolateral membrane. J Nutr 122(3):662–671

    PubMed  CrossRef  CAS  Google Scholar 

  542. Wasserman RH, Fullmer CS (1995) Vitamin D and intestinal calcium transport: facts, speculations and hypotheses. J Nutr 125(7):1971S–1979S

    PubMed  CrossRef  CAS  Google Scholar 

  543. Christakos S (2012) Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Rev Endocr Metab Disord 13(1):39–44

    PubMed  CrossRef  CAS  Google Scholar 

  544. Bronner F (2003) Mechanisms of intestinal calcium absorption. J Cell Biochem 88(2):387–393

    CrossRef  CAS  PubMed  Google Scholar 

  545. Ghishan FK, Dannan G, Arab N, Kikuchi K (1987) Intestinal maturation: calcium transport by basolateral membranes. Pediatr Res 21(3):257–260

    PubMed  CrossRef  CAS  Google Scholar 

  546. Bronner F (2009) Recent developments in intestinal calcium absorption. Nutr Rev 67(2):109–113

    PubMed  CrossRef  Google Scholar 

  547. Christakos S, Dhawan P, Ajibade D, Benn BS, Feng J, Joshi SS (2010) Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D. J Steroid Biochem Mol Biol 121(1–2):183–187

    PubMed  CrossRef  CAS  Google Scholar 

  548. Trent JT III, Watts RA, Hargrove MS (2001) Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen. J Biol Chem 276:30106–30110

    PubMed  CrossRef  CAS  Google Scholar 

  549. Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V et al (2011) Human neuroglobin functions as a redox regulated nitrite reductase. J Biol Chem 286(20):18277–18289

    PubMed  CrossRef  CAS  Google Scholar 

  550. Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19(2):164–174

    PubMed  PubMed Central  Google Scholar 

  551. Linder MC (2013) Mobilization of stored iron in mammals: a review. Nutrients 5(10):4022–4050

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  552. Muñoz M, Villar I, García-Erce JA (2009) An update on iron physiology. World J Gastroenterol 15(37):4617–4626

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  553. Sheftel AD, Mason AB, Ponka P (2012) The long history of iron in the universe and in health and disease. Biochim Biophys Acta 1820(3):161–187

    CrossRef  CAS  Google Scholar 

  554. Santiago P (2012) Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci World J 2012:846824

    CrossRef  CAS  Google Scholar 

  555. Short MW, Domagalski JE (2013) Iron deficiency anemia: evaluation and management. Am Fam Physician 87(2):98–104

    PubMed  Google Scholar 

  556. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D et al (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5(2):299–309

    PubMed  CrossRef  CAS  Google Scholar 

  557. Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life 57(11):749–759

    PubMed  CrossRef  CAS  Google Scholar 

  558. Latunde-Dada GO, Simpson RJ, McKie AT (2008) Duodenal cytochrome B expression stimulates iron uptake by human intestinal epithelial cells. J Nutr 138(6):991–995

    PubMed  CrossRef  CAS  Google Scholar 

  559. Mackenzie B, Garrick MD (2005) Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol 289(6):G981–G986

    PubMed  CrossRef  CAS  Google Scholar 

  560. Vulpe CD, Kuo Y-M, Murphy TL, Cowley L, Askwith C, Libina N et al (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195–199

    PubMed  CrossRef  CAS  Google Scholar 

  561. Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, Hankeln T (2010) Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A 107(50):21570–21575

    PubMed  PubMed Central  CrossRef  Google Scholar 

  562. Tallkvist J, Bowlus CL, Lönnerdal B (2003) Effect of iron treatment on nickel absorption and gene expression of the divalent metal transporter (DMT1) by human intestinal Caco-2 cells. Pharmacol Toxicol 92(3):121–124

    PubMed  CrossRef  CAS  Google Scholar 

  563. Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B (2012) H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. Curr Top Membr 70:169–214

    PubMed  CrossRef  PubMed Central  CAS  Google Scholar 

  564. Mackenzie B, Ujwal ML, Chang MH, Romero MF, Hediger MA (2006) Divalent metal-ion transporter DMT1 mediates both H+-coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch 451(4):544–558

    PubMed  CrossRef  CAS  Google Scholar 

  565. Kuo YM, Su T, Chen H, Attieh Z, Syed BA, McKie AT et al (2004) Mislocalisation of hephaestin, a multicopper ferroxidase involved in basolateral intestinal iron transport, in the sex linked anaemia mouse. Gut 53(2):201–206

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  566. Krishnamurthya P, Xieb T, Schuetza JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 114(3):345–358

    CrossRef  CAS  Google Scholar 

  567. Fiorito V, Geninatti Crich S, Silengo L, Aime S, Altruda F, Tolosano E (2013) Lack of plasma protein hemopexin results in increased duodenal iron uptake. PLoS ONE 8(6):e68146

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  568. Wu W, Song Y, He C, Liu C, Wu R, Fang L et al (2015) Divalent metal-ion transporter 1 is decreased in intestinal epithelial cells and contributes to the anemia in inflammatory bowel disease. Sci Rep 5:16344

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  569. Philip M, Zaballa A, Phelps S, Abkowitz J (2011) FLVCR, a heme export protein, is required for T cell development beyond the CD4+ CD8+ double-positive stage. J Immunol 186:18–64

    Google Scholar 

  570. Bakken AF, Thaler MM, Schmid R (1972) Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J Clin Invest 51(3):530–536

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  571. Przybyszewska J, Żekanowska E (2014) The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Prz Gastroenterol 9(4):208–213

    PubMed  PubMed Central  CAS  Google Scholar 

  572. Tailor CS, Willett BJ, Kabat D (1999) A putative cell surface receptor for anemia-inducing feline leukemia virus subgroup C is a member of a transporter superfamily. J Virol 73(8):6500–6505

    PubMed  PubMed Central  CAS  Google Scholar 

  573. D’Angelo G (2013) Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res 48(1):10–15

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  574. Rossi E (2005) Hepcidin—the iron regulatory hormone. Clin Biochem Rev 26(3):47–49

    PubMed  PubMed Central  Google Scholar 

  575. Fuqua BK, Lu Y, Darshan D, Frazer DM, Wilkins SJ, Wolkow N et al (2014) The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS ONE 9(6):e98792

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  576. Vashchenko G, MacGillivray RTA (2013) Multi-copper oxidases and human iron metabolism. Nutrients 5:2289–2313

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  577. Ramírez-Cárdenas L, Costa NMB, Reis FP (2005) Copper-iron metabolism interaction in rats. Nutr Res 25(1):79–92

    CrossRef  CAS  Google Scholar 

  578. Aaseth J, Gerhardsson L, Skaug MA, Alexander J (2016) General chemistry of metal toxicity and basis for metal complexation. In: Aaseth J, Crisponi G, Anderson O (eds) Chelation therapy in the treatment of metal intoxication. Elsevier, Oxford

    Google Scholar 

  579. Ponka P, Lok CN (1999) 0 The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 31(10):1111–1137

    PubMed  CrossRef  CAS  Google Scholar 

  580. Delanghe JR, Langlois MR (2001) Hemopexin: a review of biological aspects and the role in laboratory medicine. Clin Chim Acta 312(1–2):13–23

    PubMed  CrossRef  CAS  Google Scholar 

  581. Tolosano E, Altruda F (2004) Hemopexin: structure, function, and regulation. DNA Cell Biol 21(4):297–306

    CrossRef  Google Scholar 

  582. Smith A, Morgan WT (1978) Transport of heme by hemopexin to the liver: evidence for receptor-mediated uptake. Biochem Biophys Res Commun 84(1):151–157

    PubMed  CrossRef  CAS  Google Scholar 

  583. Schweigel M, Martens H (2000) Magnesium transport in the gastrointestinal tract. Front Biosci 5:D666–D677

    PubMed  CrossRef  CAS  Google Scholar 

  584. Hardwick LL, Jones MR, Brautbar N, Lee DB (1990) Site and mechanism of intestinal magnesium absorption. Miner Electrolyte Metab 16(2–3):174–180

    PubMed  CAS  Google Scholar 

  585. Leonhard-Marek S, Stumpff F, Brinkmann I, Breves G, Martens H (2005) Basolateral Mg2+/Na+ exchange regulates apical nonselective cation channel in sheep rumen epithelium via cytosolic Mg2+. Am J Physiol Gastrointest Liver Physiol 288(4):G630–G645

    PubMed  CrossRef  CAS  Google Scholar 

  586. Wang X, Zhou B (2010) Dietary zinc absorption: A play of Zips and ZnTs in the gut. IUBMB Life 62(3):176–182

    PubMed  CrossRef  CAS  Google Scholar 

  587. Sekler I, Sensi SL, Hershfinkel M, Silverman WF (2007) Mechanism and regulation of cellular zinc transport. Mol Med 13(7–8):337–343

    PubMed  PubMed Central  CAS  Google Scholar 

  588. Cragg RA, Phillips SR, Piper JM, Varma JS, Campbell FC, Mathers JC, Ford D (2005) Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut 54(4):469–478

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  589. Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71(17):3281–3295

    PubMed  CrossRef  CAS  Google Scholar 

  590. Liuzzi JP, Cousins RJ (2004) Mammalian zinc transporters. Annu Rev Nutr 24:151–172

    PubMed  CrossRef  CAS  Google Scholar 

  591. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    PubMed  CrossRef  CAS  Google Scholar 

  592. Cousins RJ (2010) Gastrointestinal factors influencing zinc absorption and homeostasis. Int J Vitam Nutr Res 80:243–248

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  593. Krebs NF (2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 130(5):1374S–1377S

    PubMed  CrossRef  CAS  Google Scholar 

  594. Myers S, Shastri MD, Adulcikas J, Sohal SS, Norouzi S (2017) Zinc and gastrointestinal disorders: a role for the zinc transporters Zips and ZnTs. Curr Pharm Des 23(16):2328–2332

    PubMed  CrossRef  CAS  Google Scholar 

  595. Maywald M, Wessels I, Rink L (2017) Zinc signals and immunity. Int J Mol Sci 18(10):E2222

    PubMed Central  CrossRef  Google Scholar 

  596. Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M et al (2003) DMT1: a mammalian transporter for multiple metals. Biometals 16(1):41–54

    PubMed  CrossRef  CAS  Google Scholar 

  597. Przybyłkowski A, Gromadzka G, Wawer A, Grygorowicz T, Cybulska A, Członkowska A (2013) Intestinal expression of metal transporters in Wilson’s disease. Biometals 26(6):925–934

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  598. Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87(3):1011–1046

    PubMed  CrossRef  CAS  Google Scholar 

  599. Mercer SW, Wang J, Burke R (2017) In vivo modeling of the pathogenic effect of copper transporter mutations that cause menkes and wilson diseases, motor neuropathy, and susceptibility to alzheimer’s disease. J Biol Chem 292(10):4113–4122

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  600. Ariöz C, Li Y, Wittung-Stafshede P (2017) The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations. Biometals 30(6):823–840

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  601. Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1(6):1125–1142

    PubMed  CrossRef  CAS  Google Scholar 

  602. Jayakanthan S, Braiterman LT, Hasan NM, Unger VM, Lutsenko S (201) Human copper transporter ATP7B (Wilson disease protein) forms stable dimers in vitro and in cells. J Biol Chem 292(46):18760–18774

    PubMed  CrossRef  PubMed Central  CAS  Google Scholar 

  603. Markovich D (2010) Sulfate and phosphate transporters in mammalian renal and gastrointestinal systems. In: Gerencser GA (ed) Epithelial transport physiology. Humana Press, New York

    Google Scholar 

  604. Kiela PR, Ghishan FK (2016) Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol 30(2):145–159

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  605. Nozawa T, Sugiurac S, Hashino Y, Tsuji A, Tamai I (2004) Role of anion exchange transporter PAT1 (SLC26A6) in intestinal absorption of organic anions. J Drug Target 12(2):97–104

    PubMed  CrossRef  CAS  Google Scholar 

  606. Hediger MA, Clémençon B, Burrier RE, Bruford EA (2013) The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med 34(2–3):95–107

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  607. Knauf F, Ko N, Jiang Z, Robertson WG, Van Itallie CM, Anderson JM, Aronson PS (2011) Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J Am Soc Nephrol 22(12):2247–2255

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  608. Hatch M, Freel RW (2008) The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Sem Nephrol 28(2):143–151

    CrossRef  CAS  Google Scholar 

  609. Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111(7):931–943

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  610. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204(3):274–308

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  611. Kerper LE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol 262(5 Pt 2):R761–R765

    PubMed  CAS  Google Scholar 

  612. Bridges CC, Zalups RK (2017) Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 91(1):63–81

    PubMed  CrossRef  CAS  Google Scholar 

  613. Chmielowska-Bąk J, Izbiańska K, Deckert J (2013) The toxic Doppelganger: on the ionic and molecular mimicry of cadmium. Acta Biochim Pol 60(3):369–374

    PubMed  Google Scholar 

  614. Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol Toxicol 33:545–571

    PubMed  CrossRef  CAS  Google Scholar 

  615. Foulkes EC (2000) Transport of toxic heavy metals across cell membranes. Proc Soc Exp Biol Med 223(3):234–240

    PubMed  CrossRef  CAS  Google Scholar 

  616. Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110(5):689–694

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  617. Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N (2002) Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J 367(1):239–246

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  618. Oude Elferink RP, de Waart R (2007) Transporters in the intestine limiting drug and toxin absorption. J Physiol Biochem 63(1):75–81

    PubMed  CrossRef  CAS  Google Scholar 

  619. Chan LM, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21(1):25–51

    PubMed  CrossRef  CAS  Google Scholar 

  620. Pang KS (2003) Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette review series). DMD 31(12):1507–1519

    CrossRef  CAS  Google Scholar 

  621. Lemos C, Jansen G, Peters GJ (2008) Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br J Cancer 98(5):857–862

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  622. Dietrich CG, Geier A, Oude Elferink RPJ (2003) ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 52(12):1788–1795

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  623. Albermann N, Schmitz-Winnenthal FH, Z’graggen K, Volk C, Hoffmann MM, Haefeli WE, Weiss J (2005) Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 70(6):949–58

    PubMed  CrossRef  CAS  Google Scholar 

  624. Tsuji A, Tamai I (1996) Carrier-mediated intestinal transport of drugs. Pharm Res 13(7):963–977

    PubMed  CrossRef  CAS  Google Scholar 

  625. Hukkanen J, Hakkola J, Rysä J (2014) Pregnane X receptor (PXR)—a contributor to the diabetes epidemic? Drug Metab Drug Interact 29(1):3–15

    CrossRef  CAS  Google Scholar 

  626. Tamai I, Nakanishi T, Hayashi K, Terao T, Sai Y, Shiraga T et al (1997) The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of beta-lactam antibiotics in the rat small intestine. J Pharm Pharmacol 49(8):796–801

    PubMed  CrossRef  CAS  Google Scholar 

  627. El-Kattan A, Varma M (2012) Oral absorption, intestinal metabolism and human oral bioavailability. In: Paxton J (ed) Topics on drug metabolism. InTech, China

    Google Scholar 

  628. Kajal P, Bhutani N, Tyagi N, Arya P (2017) Trichobezoar with and without Rapunzel syndrome in paediatric population: a case series from a tertiary care centre of Northern India. Int J Surg Case Rep 40:23–26

    PubMed  PubMed Central  CrossRef  Google Scholar 

  629. Eng K, Kay M (2012) Gastrointestinal bezoars: history and current treatment paradigms. Gastroenterol Hepatol (N Y) 8(11):776–778

    Google Scholar 

  630. Jao SW, Wang LT, Wu CC, Hsiao CW (2015) Removal of a giant rectosigmoid phytobezoar without Laparotomy. Indian J Surg 77(1):69–71

    PubMed  CrossRef  Google Scholar 

  631. Iwamuro M, Okada H, Matsueda K, Inaba T, Kusumoto C, Imagawa A, Yamamoto K (2015) Review of the diagnosis and management of gastrointestinal bezoars. World J Gastrointest Endosc 7(4):336–345