History of Robots and Robotic Surgery

  • Paolo FioriniEmail author


This chapter presents a brief history of robotics and one of its most successful applications, surgical robotics. The first section describes the beginning of this technology, from 1950 to 1980, when the basic concepts and technologies were developed. The second section addresses the development of robotic surgery, which has established itself as a necessary complement to standard surgical practice. The third section briefly summarizes some of the current research efforts in robotic surgery, and the fourth section introduces the main commercial surgical robots available on the market. The final section describes the most important robotic concepts that are necessary to understand the main features of any surgical robot.


Robotics Robot-assisted surgery History of robotics 


  1. 1.
    Goertz RC. Fundamentals of general-purpose remote manipulators. Nucleonics. 1952;10:36–42.Google Scholar
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Needham J. Science and civilisation in China: volume 2, history of scientific thought. Cambridge: Cambridge University Press; 1991.Google Scholar
  6. 6.
    Fowler CB. The museum of music: a history of mechanical instruments. Music Educ J. 1967;54:45–9.CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Law JM. Puppets of nostalgia—the life, death and rebirth of the Japanese Awaji Ningyo tradition. Princeton, NJ: Princeton University Press; 1997.Google Scholar
  9. 9.
    Wood G. Living dolls: a magical history of the quest for mechanical life. London: Faber & Faber; 2003.Google Scholar
  10. 10.
  11. 11.
  12. 12.
    Rosenberg J. A history of numerical control 1949–1972: the technical development, transfer to the industry, and assimilation. University of Southern California Information Science Institute, Marina del Rey, CA. Report No. ISI-RR-72-3; 1972.Google Scholar
  13. 13.
    Malone B. George Devol: a life devoted to invention, and robots. IEEE Spectrum; 2011.
  14. 14.
    Engelberger JF. Robotics in practice. Kempston: IFS Publications; 1980.Google Scholar
  15. 15.
    Ernst HA. A computer-operated mechanical hand. ScD Thesis, Massachusetts Institute of Technology; 1961.Google Scholar
  16. 16.
    Roberts LG. Homogeneous matrix representation and manipulation of N-dimensional constructs. Massachusetts Institute of Technology Lincoln Laboratory: Lexington, MA; 1966.Google Scholar
  17. 17.
    Wishman MW. The use of optical feedback in computer control of an arm. Stanford AI Laboratory, AIM56; 1967.Google Scholar
  18. 18.
  19. 19.
    Feldman J. The use of vision and manipulation to solve the instant insanity puzzle. Proceedings of the Second International Conference on Artificial Intelligence. London, UK; 1971. p. 359–64.Google Scholar
  20. 20.
    Paul RP. Modeling, trajectory calculation and servoing of a computer controlled arm. AIM 177. Stanford: Stanford AI Laboratory; 1972.Google Scholar
  21. 21.
    Paul RP. WAVE, a model-based language for manipulator control. Ind Robot. 1977;4:10–7.CrossRefGoogle Scholar
  22. 22.
    Hon RE. Application flexibility of a computer controlled industrial robot. SME Technical Paper, MR 76-603; 1976.Google Scholar
  23. 23.
  24. 24.
    Vokobrovitch M, Potkonjak V. Scientific fundamentals of robotics 1: dynamics of manipulation robots. Heidelberg: Springer Verlag; 1982.Google Scholar
  25. 25.
    Popov EP, Yurevich EI. Robotics. Moscow: Imported Pubn; 1989.Google Scholar
  26. 26.
    Kuleshov VS, Lakota NA. Remotely controlled robots and manipulators. Moscow: MIR Publishers; 1988.Google Scholar
  27. 27.
    Vokobrovitch M, Stokic D. Control of manipulation robots: theory and application. Scientific fundamentals of robotics series 2. Heidelberg: Springer-Verlag; 1982.Google Scholar
  28. 28.
    Coiffet P, Chirouze M. An introduction to robot technology. Paris: Hermes Publishing; 1982.Google Scholar
  29. 29.
    Profile: Tezuka Osamu. Anime Academy. 6 November 2007.Google Scholar
  30. 30.
    Ejiri M, Uno T, Yoda H. A prototype intelligent robot that assembles objects from plane drawings. IEEE Trans Comp. 1972;21:199–207.Google Scholar
  31. 31.
  32. 32.
    Inue H. Computer controlled bilateral manipulators. Bull Japanese Soc Mech Eng. 1971;14:199–207.CrossRefGoogle Scholar
  33. 33.
    Hoeckelmann M, Rudas IJ, Fiorini P, Kirchner F, Haidegger T. Current capabilities and development potential in surgical robotics. Int J Advanced Robotic Syst. 2015;12:1–39.CrossRefGoogle Scholar
  34. 34.
    Siciliano B, Khatib O, editors. Springer handbook of robotics, vol. LXXVI. 2nd ed. Berlin: Springer; 2017. 2227 p. 1375 illus. isbn:978-3-540-30301-5.Google Scholar
  35. 35.
    Alexander AD. Impacts of telemation on modern society. Proceedings of the 1st CISM–ITOMM Symposium. 1972. p. 121–136.CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35:153–60.CrossRefPubMedCentralGoogle Scholar
  38. 38.
  39. 39.
    Bowersox JC, Shah A, Jensen J, Hill J, Cordts PR, Green PS. Vascular applications of telepresence surgery: initial feasibility studies in swine. J Vasc Surg. 1996;23:281–7.CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Schurr MO, Arezzo A, Buess GF. Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery. Eur J Cardiothorac Surg. 1999;16(Suppl 2):S97–105.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rininsland H. ARTEMIS. A telemanipulator for cardiac surgery. Eur J Cardiothorac Surg. 1999;16(Suppl 2):S106–11.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Harris SJ, Arambula-Cosio F, Mei Q, Hibberd RD, Davies BL, Wickham JE, et al. The Probot—an active robot for prostate resection. Proc Inst Mech Eng H. 1997;211:317–25.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Rovetta A, Sala R, Molinari Tosatti L. A robotized system for the execution of a transurethral laser prostatectomy. ISIR, International Symposium on Industrial Robots, Milano, October 1996.Google Scholar
  44. 44.
    Rassweilera J, Binderc J, Frede T. Robotic and telesurgery: will they change our future? Curr Opin Urol. 2001;11:309–20.CrossRefGoogle Scholar
  45. 45.
    Jakopec M, Harris SJ, Rodriguez y Baena F, Gomes P, Davies BL. The Acrobot® system for total knee replacement. Ind Robot. 2003;30:61–6.CrossRefGoogle Scholar
  46. 46.
    Brandt G, Radermacher K, Lavallée S, Staudte HW, Rau G. A compact robot for image guided orthopedic surgery: concept and preliminary results. In: 4th International Symposium on Medical Robotics and Computer Assisted Surgery (CVRMed-MRCAS’97), Grenoble, France; 1997. p. 767–776.Google Scholar
  47. 47.
    Debandi A, Maeyama A, Lu S, Hume C, Asai S, Goto B, et al. Biomechanical comparison of three anatomic ACL reconstructions in a porcine model. Knee Surg Sports Traumatol Arthrosc. 2011;19:728–35.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kraft BM, Jäger C, Kraft K, Leibl BJ, Bittner R. The AESOP robot system in laparoscopic surgery: increased risk or advantage for surgeon and patient? Surg Endosc. 2004;18:1216–23.CrossRefPubMedCentralGoogle Scholar
  49. 49.
  50. 50.
    Das H, Ohm T, Boswell C, Steele R, Rodriguez G. Robot-assisted microsurgery development at JPL. In: Akay M, Marsh A, editors. Information technologies in medicine. New York: John Wiley & Sons; 2001. p. 85–99.Google Scholar
  51. 51.
    Stephenson ER Jr, Sankholkar S, Ducko CT, Damiano RJ Jr. Robotically assisted microsurgery for endoscopic coronary artery bypass grafting. Ann Thorac Surg. 1998;66:1064–7.CrossRefPubMedCentralGoogle Scholar
  52. 52.
  53. 53.
    Rovetta A, Sala R, Cosmi F, Wen X, Milanesi S, Sabbadini D, et al. A new telerobotic application: remote laparoscopic surgery using satellites and optical fiber networks for data exchange. Int J Robot Res. 1996;15:267–79.CrossRefGoogle Scholar
  54. 54.
  55. 55.
  56. 56.
    Garcia P, Rosen J, Kapoor C, Noakes M, Elbert G, Treat M, et al. Trauma pod: a semi-automated telerobotic surgical system. Int J Med Robot. 2009;5:136–46.CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Benabid AL, Hoffman D, Ashraff A, Koudsie A, Le Bas JF. Robotic guidance in advanced imaging environments. In: Alexander III E, Maciunas RJ, editors. Advanced neurosurgical navigation. New York: Thieme Medical Publishers; 1999. p. 571–83.Google Scholar
  58. 58.
  59. 59.
    Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A. Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg. 1995;1:266–72.CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Morgan PS, Carter T, Davis S, Sepehri A, Punt J, Byrne P, et al. The application accuracy of the PathFinder neurosurgical robot. In: Lemke HU, Inamura K, Vannier MW, Farman AG, Doi K, Reiber JHC, editors. CARS 2003—computer assisted radiology and surgery: proceedings of the 17th international congress and exhibition, London, 25–28 June 2003 London: Elsevier; 2003.CrossRefGoogle Scholar
  61. 61.
    Hagn U, Nickl M, Jörg S, Passig G, Bahls T, Nothhelfer A, et al. The DLR MIRO: a versatile lightweight robot for surgical applications. Ind Robot. 2008;35:324–6.CrossRefGoogle Scholar
  62. 62.
  63. 63.
  64. 64.
    Monticello G, Morselli M, Fiorini P. The development of the surgical robot Surgenius. In: International Federation of Robotics. World robotics 2011: service robots. New York: United Nations; 2011. p. 144–148. ISBN 978-3-8163-0616-0.Google Scholar
  65. 65.
    Bauer J, Lee BR, Stoianovici D, Bishoff JT, Micali S, Micali F, Kavoussi LR. Remote percutaneous renal access using a new automated telesurgical robotic system. Telemed J E Health. 2001;7:341–6.CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Muradore R, Fiorini P, Akgun G, Barkana DE, Bonfe M, Boriero F, et al. Development of a cognitive robotic system for simple surgical tasks. Int J Adv Robot Syst. 2015;12:37. Scholar
  67. 67.
  68. 68.
  69. 69.
  70. 70.
  71. 71.
    Coste-Manière E, Olender D, Kilby W, Schulz RA. Robotic whole body stereotactic radiosurgery: clinical advantages of the Cyberknife integrated system. Int J Med Robot. 2005;1:28–39.CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Teh BS, Paulino AC, Lu HH, Chiu JK, Richardson S, Chiang S, et al. Versatility of the Novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat. 2007;6:347–54.CrossRefPubMedCentralGoogle Scholar
  73. 73.
  74. 74.
  75. 75.
  76. 76.
    Siciliano B, Sciavicco L, Villani L, Oriolo G. Robotics modelling, planning and control. London: Springer-Verlag; 2009.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations