Energy Technologies and Human Well-being. Using Sustainable Design for the Energy Transition

  • Rafaela HillerbrandEmail author
  • Kathrin Goldammer
Part of the Philosophy of Engineering and Technology book series (POET, volume 31)


Today’s electricity supply and energy access provide the foundation for health, education, economic growth, and societal development. There are manifold interconnections between individual well-being and our energy system. We are currently witnessing an energy transition, a transition towards more sustainable energy sources and uses, and this shift will also greatly impact on human well-being in multiple ways. This transition may involve more (or less) decentralized energy technologies, the transfer of funds (within a society, or internationally), and so forth. However, the impacts this transition may have on individual well-being are not well studied. The interconnection between well-being and energy systems is, in fact, rarely spelled out. Although there are various indicator sets for sustainable energy, most of these fall short of explicating the connection between (sustainable) energy and individual well-being, and most citizens, irrespective of their educational level, are not aware of the multifaceted impacts the energy system or the energy transition may have on their personal well-being.


Sustainability Energy Capability approach Nussbaum Intergenerational justice Intragenerational justice Ethics Values 


  1. Barclay, L. (2003). What kind of liberal is Martha Nussbaum? SATS: Nordic. Journal of Philosophy, 4(3), 5–24.Google Scholar
  2. BDI. (2014). BDI Energiewende-Navigator, Monitoring zur Umsetzung der Energiewende. Accessed 15 Aug 2017.
  3. Bräutigam, K. -R., Kopfmüller, J., Lichtner, P., Rilling, B., Rösch, C., Stelzer, V., & Weinberger, N. (2015). Indicators for monitoring and assessing the German energy transition. Poster presentation at the EST Energy, Science & Technology International Conference & Exhibition, Karlsruhe.Google Scholar
  4. Brundtland. (1987). Report of the world commission on environment and development: Our common future. Accessed 15 Aug 2017.
  5. Bundesregierung. (2002). Perspektiven für Deutschland -Unsere Strategie für eine nachhaltige Entwicklung. Accessed 23 Aug 2017.
  6. Bundesregierung. (2016). Deutsche Nachhaltigkeitsstrategie, Indikatorenbericht 2016. Accessed 23 Aug 2017.
  7. California Energy Commission. (2017). Water-Energy-Nexus. Accessed 23 Aug 2017.
  8. Decker, M. (2013). Technikfolgen. In A. Grunwald (Ed.), Handbuch Technikethik. Stuttgart: Metzler.CrossRefGoogle Scholar
  9. Crocker, D. A. (2008). Ethics of global development: Agency, capability and deliberative democracy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Die Bundesregierung. (2010). Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Accessed 15 Aug 2017.
  11. Engerer. (2014). Energiegenossenschaften in der Energiewende, DIW Roundup. Accessed 23 August 2017.
  12. EnWG. (2017). Energiewirtschaftsgesetz (Gesetz über die Elektrizitäts- und Gasversorgung). Accessed 23 Aug 2017.
  13. Ethik-Kommission. (2011). Germany’s energy transition: A collective project for the future. Produced by the Ethics Commission for a Safe Energy Supply. Accessed 15 Aug 2017.
  14. Gardiner, S. (2010). Is “Arming the Future” with geoengineering really the lesser evil?: Some doubts about the ethics of intentionally manipulating the climate system. In S. M. Gardiner, S. Caney, D. Jamieson, & H. Shue (Eds.), Climate ethics. Essential readings (pp. 284–312). Oxford: Oxford University Press.Google Scholar
  15. Goldammer, K., Mans, U., & Rivera, M. (2013). Beiträge zur sozialen Bilanzierung der Energiewende, IASS Schriftenreihe. Accessed 23 Aug 2017.
  16. Grober, U. (2013). Die Entdeckung der Nachhaltigkeit: Kulturgeschichte eines Begriffs. München: Kunstmann.Google Scholar
  17. Haggett, C. (2011). Understanding public responses to offshore wind power. Energy Policy, 39, 503–510.CrossRefGoogle Scholar
  18. Hillerbrand, R. (2015). The role of nuclear energy in the future energy landscape: Energy scenarios, nuclear energy and sustainability. In B. Taebi & S. Roeser (Eds.), The ethics of nuclear energy: Risk, justice, and democracy in the post-Fukushima era (pp. 231–249). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Hillerbrand, R., & Dumke, M. (2011). An ethical framework on how to assess sustainability. An Advancement of Sen’s capability approach, proceedings of the 6th Dubrovnik conference on sustainable development of energy, water and environmental systems.Google Scholar
  20. Hillerbrand, R., & Goldammer, K. (2017). Energietechnik und ein gutes Leben: ein Plädoyer für einen neuen Energiediskurs. In KWI Working Paper Special Issue Technologischer Fortschritt und gutes Leben, ISSN 2365-9092.Google Scholar
  21. Hillerbrand, R., & Roeser, S. (2015). Towards a third ‘practice turn’: An inclusive and empirically informed perspective on risk. Philosophy of Technology after the Empirical Turn (pp. 145–166).Google Scholar
  22. Höffe, O. (1993). Moral als Preis der Moderne: Ein Versuch über Wissenschaft, Technik und Umwelt. Frankfurt: Suhrkamp.Google Scholar
  23. IAEA (International Atomic Energy Agency). (2005). Energy indicators for sustainable development: Guidelines and methodologies. Vienna: IAEA.Google Scholar
  24. IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva: IPCC.Google Scholar
  25. Jørgensen, A., Le Bocq, A., Nazarkina, L., & Hausschild, M. (2008). Methodologies for social life cycle assessment. The International Journal of Life Cycle Assessment, 13(2), 96–103.CrossRefGoogle Scholar
  26. Klitkou, A., Hain, D. S., Munch Andersen, M., Lindgaard Christensen, J., Rennings, K., & Borup, M. (2014). Indicators of energy innovation systems and their dynamics. EIS Radar Report Vol. 2. Kopenhagen: Danish Ministry of Research.Google Scholar
  27. Kloepffer, W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89–95.CrossRefGoogle Scholar
  28. Kopfmüller, J., Brandl, V., Jörissen, J., Paetau, M., Banse, G., Coenen, R., & Grunwald, A. (2001). Nachhaltige Entwicklung integrativ betrachtet: Konstitutive Elemente, Regeln, Indikatoren. Berlin: Edition Sigma.Google Scholar
  29. Kuenneke, R., Mehos, D. C., Hillerbrand, R., & Hemmes, K. (2015). Understanding values embedded in offshore wind energy systems: Toward a purposeful institutional and technological design. Environmental Science & Policy, 53(B), 118–129.CrossRefGoogle Scholar
  30. Lawrence, M., & Crutzen, P. (2016). Was breaking the taboo on research on climate engineering via albedo modification a moral hazard, or a moral imperative? Earth’s Future, 5, 136–143. Scholar
  31. Nussbaum, M. (1999). Women and equality: The capabilities approach. International Labour Review, 138, 227–245.CrossRefGoogle Scholar
  32. Nussbaum, M. (2000). Women and human development: The capabilities approach. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. Nussbaum, M. (2006). Frontiers of justice: Disability, nationality, species membership. Cambridge, MA: Harvard University Press.Google Scholar
  34. Oosterlaken, I. (2014). Applying value-sensitive design (VSD) to wind turbines and wind parks: An exploration. Science and Engineering Ethics 20 (Open Access (
  35. Ott, K., & Döring, R. (2006). Grundlinien einer Theorie “starker” Nachhaltigkeit. In K. Köchy & M. Norwig (Eds.), Umwelt-Handeln: Zum Zusammenhang von Naturphilosophie und Umweltethik. Verlag Karl Alber: Freiburg.Google Scholar
  36. Rawls, J. (1971). A theory of justice. Cambrige, MA: Harvard University Press.Google Scholar
  37. Rawls, J. (1993). Political liberalism. New York: Columbia University Press.Google Scholar
  38. Rawls, J. (2001). Justice as fairness. A restatement. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
  39. Reisch, L., & Thøgersen, J. (2015). Handbook of research on sustainable consumption. Cheltenham: Edward Elgar Pub.CrossRefGoogle Scholar
  40. Renn, O., Deuschle, J., Jäger, A., & Weimer-Jehle, W. (2007). Leitbild Nachhaltigkeit. Eine normativ-funktionale Konzeption und ihre Umsetzung. Wiesbaden: VS Verlag für Sozialwissenschaften/GWV Fachverlag GmbH.Google Scholar
  41. Robeyns, I. (2016). The capability approach. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 Edition). Accessed 15 Aug 2017.
  42. Scott Cato, M. (2009). Green economics. London: Earthscan.Google Scholar
  43. Sen, A. (1992). Inequality reexamined. Oxford: Oxford University Press.Google Scholar
  44. Sen, A. (2004). Capabilities, lists and public reasons: Continuing the conversation. Feminist Economics, 10(3), 77–80.CrossRefGoogle Scholar
  45. Shue, H. (1993). Subsistence emissions and luxury emissions. Law & Policy, 15(1), 39–60.CrossRefGoogle Scholar
  46. Taebi, B., Correljé, A., Cuppen, E., Dignum M. & Pesch U. (2014). Responsible innovation as an endorsement of public values: The need for interdisciplinary research. Journal of Responsible Innovation 1(1), 118–124.CrossRefGoogle Scholar
  47. UN. (2015). Transforming our world: The 2030 agenda for sustainable development. Accessed 15 Aug 2017.
  48. Vahlenkamp, T., & Gohl, M. (2012). Energiewende-index Deutschland 2020. Energiewirtschaftliche Tagesfragen, 62(9), 22–26.Google Scholar
  49. Van den Hoven, J., Vermaas, P. E., & van de Poel, I. (Eds.). (2015). Handbook of ethics, values, and technological design sources, theory, values and application domains. Dordrecht: Springer.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Technikfolgenabschätzung und SystemanalyseKarlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Reiner Lemoine InstitutBerlinGermany

Personalised recommendations