Skip to main content

Flame Propagation Over the Heat Absorbing Substrate

  • Conference paper
  • First Online:
  • 1449 Accesses

Abstract

The paper presents experimental study of hemispherical flame propagation in a hydrogen-air mixture. The flame propagates over a solid aluminum wall and a layer of steel wool. Velocities of flame propagation are comparing at flame radii up to 0.4 m. Before and after passing through the flame, front steel wool has been investigated by the scanning electron microscope using energy-dispersive analysis system. Calculation of heat absorption in the steel wool layer shows that the heat losses due to the absorption are sufficient to reduce the flame front speed, which is observed in the experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.A. Petukhov et al., Influence of the initiation energy on development of hydrogen–air mixtures combustion in large spherical volumes. High Temp. 54, 99 (2016)

    Article  Google Scholar 

  2. P. Clavin, Quasi-isobaric ignition near the flammability limits. Flame balls and self-extinguishing flames. Combust. Flame 175, 80 (2017)

    Article  Google Scholar 

  3. Y.A. Gostintsev, A.G. Istratov, Y.V. Shulenin, Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explos. Shock Waves. 24, 563 (1988)

    Article  Google Scholar 

  4. S. Yang et al., Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities. Combust. Flame 171, 112 (2016)

    Article  Google Scholar 

  5. J. Beeckmann et al., Propagation speed and stability of spherically expanding hydrogen/air flames: experimental study and asymptotics. Proc. Combust. Inst. 36, 1531 (2015)

    Article  Google Scholar 

  6. M. Nakahara et al., Fundamental burning velocities of meso-scale propagating spherical flames with H2, CH4 and C3H8 mixtures. Proc. Combust. Inst. 34, 703 (2013)

    Article  Google Scholar 

  7. A. Drakon et al., The opposite influences of flame suppressants on the ignition of combustible mixtures behind shock waves. Combust. Flame 176, 592 (2017)

    Article  Google Scholar 

  8. D. Bradley, T.M. Cresswell, J.S. Puttock, Flame acceleration due to flame-induced instabilities in large-scale explosions. Combust. Flame 124, 551 (2001)

    Article  Google Scholar 

  9. V.V. Molkov, D.V. Makarov, H. Schneider, Hydrogen-air deflagrations in open atmosphere: Large eddy simulation analysis of experimental data. Int. J. Hydrog. Energy 32, 2198 (2007)

    Article  Google Scholar 

  10. W.K. Kim et al., Self-similar propagation of expanding spherical flames in large scale gas explosions. Proc. Combust. Inst. 35, 2051 (2015)

    Article  Google Scholar 

  11. M.A. Liberman et al., Self-acceleration and fractal structure of outward freely propagating flames. Phys. Fluids 16, 2476 (2004)

    Article  Google Scholar 

  12. V. Karlin, G. Sivashinsky, The rate of expansion of spherical flames. Combust. Theory Model. 10, 625 (2006)

    Article  MathSciNet  Google Scholar 

  13. W. Han, Y. Gao, C.K. Law, Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels: an integrated mechanistic study. Combust. Flame 176, 285 (2017)

    Article  Google Scholar 

  14. L. Kagan, G. Sivashinsky, Transition to detonation of an expanding spherical flame. Combust. Flame 175, 307 (2017)

    Article  Google Scholar 

  15. S.B. Dorofeev et al., Deflagration to detonation transition in large confined volume of lean hydrogen-air mixtures. Combust. Flame 104, 95 (1996)

    Article  Google Scholar 

  16. V. Akkerman, C.K. Law, V. Bychkov, Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering. Phys. Rev. E – Stat. Phys., Plasmas, Fluids 83, 1 (2011)

    Google Scholar 

  17. N. Hayashi, H. Yamashita, Numerical study of influence of surface reaction and heat-loss on flame intensity of methane–air flames. J. Phys. Conf. Ser. 557, 012019 (2014)

    Article  Google Scholar 

  18. J.P. Huo et al., Effect of surface reactions on ignition delay of methanol/air mixture. J. Phys. Conf. Ser. 557, 012080 (2014)

    Article  Google Scholar 

  19. Y. Saiki, Y. Suzuki, Effect of wall surface reaction on a methane-air premixed flame in narrow channels with different wall materials. Proc. Combust. Inst. 34, 3395 (2013)

    Article  Google Scholar 

  20. R. Mari et al., Effect of pressure on hydrogen/oxygen coupled flame-wall interaction. Combust. Flame 168, 409 (2016)

    Article  Google Scholar 

  21. M. Enomoto, Head-on quenching of a premixed flame on the single wall surface. JSME Int J Ser B. 44, 624 (2001)

    Article  Google Scholar 

  22. J. Davison et al., Explosive testing of polymer retrofit masonry walls. J. Perform. Constr. Facil. 12, 100 (2004)

    Article  Google Scholar 

  23. B. Nie, L. Yang, J. Wang, Experiments and mechanisms of gas explosion suppression with foam ceramics experiments and mechanisms of gas explosion suppression. Combust. Sci. Technol. 188, 2117 (2016)

    Article  Google Scholar 

  24. R. Zalosh, Industrial Fire Protection Engineering (Wiley, Chichester, 2003), pp. 266–268

    Book  Google Scholar 

  25. Z. Wang, M. Liu, Double-suppression effect of wire mesh on gas explosion in linked vessels. CIESC J. 67(4), 1618 (2016)

    Google Scholar 

  26. C. Johansen, G. Ciccarelli, Combustion in a horizontal channel partially filled with a porous media. Shock Waves 18, 97 (2008)

    Article  Google Scholar 

  27. V.S. Babkin, A.A. Korzhavin, V.A. Bunev, Propagation of premixed gaseous explosion flames in porous media. Combust. Flame 87, 182 (1991)

    Article  Google Scholar 

  28. Y.V. Polezhaev, I.L. Mostinskii, The normal flame velocity and analysis of the effect of the system parameters on this velocity. High Temp. 43(6), 937 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

The study was performed by a grant from the Russian Science Foundation (project 14-50-00124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Golub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Golub, V.V., Korobov, A., Mikushkin, A., Volodin, V. (2019). Flame Propagation Over the Heat Absorbing Substrate. In: Sasoh, A., Aoki, T., Katayama, M. (eds) 31st International Symposium on Shock Waves 1. ISSW 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-91020-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91020-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91019-2

  • Online ISBN: 978-3-319-91020-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics