Curved Shock Wave Propagation in Environment Stratosphere by Laser Ablation

  • D. T. Tran
  • C. Xie
  • K. Mori
Conference paper


The technique of material removal from a solid target, called laser ablation, is used for a number of industrial applications, particularly in laser propulsion. When a solid surface is irradiated by an intense laser beam, the target surface is heated and ablated, which creates the impulse for the target in opposite direction. The ablated material interacts with ambient gas and then creates the curved shock wave around the target. By using Nd:YAG laser as an ablation source, the shock wave propagation in the stratosphere environment is studied experimentally. As a result, the shape and energy of shock wave show the difference due to the reduction of pressure. The impulse generated by laser ablation is found being insensitive in low ambient pressure.


  1. 1.
    A. Kantrowitz, Propulsion to orbit by ground-based lasers. Astronaut. Aeronaut. 10(5), 74–76 (1972)Google Scholar
  2. 2.
    C.R. Phipps Jr., T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, T.R. King, Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse laser. J. Appl. Phys. 64, 1083 (1988)CrossRefGoogle Scholar
  3. 3.
    K. Anju, K. Sawada, A. Sasoh, K. Mori, E. Zaretsky, Time-resolved measurements of impulse generation in pulsed laser-ablative propulsion. J. Propuls. Power 24(2), 322–329 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Dufrene, P. Bournot, J.P. Caressa, G. Bosca, J. David, Pressure and impulse on an aluminum target from pulsed laser irradiation at reduced ambient pressure. Appl. Phys. Lett. 38(4), 234–236 (1981)CrossRefGoogle Scholar
  5. 5.
    T. Sakai, Impulse generation on aluminum target irradiated with Nd:YAG laser pulse in ambient gas. J. Propuls. Power 25(2), 406–414 (2009)CrossRefGoogle Scholar
  6. 6.
    N. Arnold, J. Gruver, J. Heitz, Spherical expansion of the vapor plume into ambient gas: An analytical model. Appl. Phys. A 69, 87–93 (1999)CrossRefGoogle Scholar
  7. 7.
    L.I. Sedov, Similarity and Dimension Methods in Mechanics (Academic Press, New York, 1969)Google Scholar
  8. 8.
    A.V. Gusarov, A.G. Gnedovets, I. Smurov, Gas dynamics of laser ablation: Influence of ambient atmosphere. J. Appl. Phys. 88(7), 4352–4364 (2000)CrossRefGoogle Scholar
  9. 9.
    H. Furusawa, T. Sakka, Y. Ogata, Characterization of ablated species in laser-induced plasma plume. J. Appl. Phys. 96(2), 975–982 (2004)CrossRefGoogle Scholar
  10. 10.
    A.V. Pakhomov, J. Lin, R. Tan, Air pressure effect on propulsion with transversely excited atmospheric CO2 laser. AIAA J. 44(1), 136–141 (2006)CrossRefGoogle Scholar
  11. 11.
    K. Mori, R. Maruyama, K. Shimamura, Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere. J. Appl. Phys. 118, 073304 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • D. T. Tran
    • 1
  • C. Xie
    • 1
  • K. Mori
    • 1
  1. 1.Department of Aerospace EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations