Skip to main content

Numerical Study of Hydrogen–Air Detonation in Vibrational Non-equilibrium

  • Conference paper
  • First Online:
Book cover 31st International Symposium on Shock Waves 2 (ISSW 2017)

Included in the following conference series:

  • 1080 Accesses

Abstract

The effects of vibrational non-equilibrium and vibration–chemistry coupling on hydrogen–air detonation are numerically investigated by solving reactive Euler equations coupled with a multiple vibrational temperature-based model. Detailed hydrogen–air reaction kinetic is utilized, Landau–Teller model is adopted to solve the vibrational relaxation process, and the coupled vibration–chemistry vibration model is used to evaluate the vibration–chemistry coupling. It is shown that the relaxation process and vibration–chemistry coupling considerably influence the hydrogen–air detonation structure, highlighting the importance of correct treatment of vibrational non-equilibrium in detonation simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Kaneshige, Gaseous Detonation Initiation and Stabilization by Hypervelocity Projectiles (California Institute of Technology, Pasadena, 1999)

    Google Scholar 

  2. N. Tsuboi et al., Three-dimensional numerical simulation for hydrogen/air detonation: Rectangular and diagonal structures. Proc. Combust. Inst. 29, 2 (2002)

    Article  Google Scholar 

  3. V.N. Gamezo et al., Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen–air mixture. Proc. Combust. Inst. 31, 2 (2007)

    Article  Google Scholar 

  4. R. Millikan, D. White, Vibrational relaxation in air. AIAA J. 2, 10 (1964)

    Google Scholar 

  5. V. Komarov, Role of vibrational relaxation in the nonequilibrium flow of air in nozzles. J. Appl. Mech. Tech. Phys. 19, 2 (1978)

    Article  Google Scholar 

  6. O. Knab et al., Theory and validation of the physically consistent coupled vibration-chemistry-vibration model. J. Thermophys. Heat Transf. 9, 2 (1995)

    Article  Google Scholar 

  7. C. Park, Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen. J. Thermophys. Heat Transf. 2, 1 (1988)

    Article  Google Scholar 

  8. B. Taylor et al., Estimates of vibrational nonequilibrium time scales in hydrogen-air detonation waves, in 24th International Colloquium on the Dynamics of Explosive and Reactive Systems, Taipei, Taiwan, July 2013

    Google Scholar 

  9. S.-C. Chang, The method of space-time conservation element and solution element—A new approach for solving the Navier-Stokes and Euler equations. J. Comput. Phys. 119, 2 (1995)

    Article  MathSciNet  Google Scholar 

  10. H. Shen, C.-Y. Wen, A characteristic space–time conservation element and solution element method for conservation laws II. Multidimensional extension. J. Comput. Phys. 305, 775–792 (2016)

    Google Scholar 

  11. H. Shen et al., Robust high-order space–time conservative schemes for solving conservation laws on hybrid meshes. J. Comput. Phys. 281, 375–402 (2015)

    Google Scholar 

  12. H. Shen et al., A characteristic space–time conservation element and solution element method for conservation laws. J. Comput. Phys. 288, 101–118 (2015)

    Google Scholar 

  13. H. Shen et al., Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. J. Comput. Phys. 330, 668–692 (2017)

    Google Scholar 

  14. H. Shen, M. Parsani, The role of multidimensional instabilities in direct initiation of gaseous detonations in free space. J. Fluid Mech. 813, R4 (2017)

    Google Scholar 

  15. L. Shi et al., Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol. 189, 5 (2016)

    Google Scholar 

  16. M.P. Burke et al., Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44, 7 (2012)

    Article  Google Scholar 

  17. R.J. Kee et al., CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, Sandia national laboratories report SAND96-8216 (1996)

    Google Scholar 

  18. R.C. Millikan, D.R. White, Systematics of vibrational relaxation. J. Chem. Phys. 39, 12 (1963)

    Google Scholar 

  19. W.G. Vincenti, C.H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, 1965), pp. 198–206

    Google Scholar 

  20. Z. Hong et al., A new shock tube study of the H + O 2 → OH + O reaction rate using tunable diode laser absorption of H 2 O near 2.5 μm. Proc. Combust. Inst. 33, 1 (2011)

    Article  Google Scholar 

  21. M.F. Campbell et al., Dependence of calculated postshock thermodynamic variables on vibrational equilibrium and input uncertainty. J. Thermophys. Heat Transf. 31, 586–608 (2017)

    Google Scholar 

Download references

Acknowledgment

We are grateful for the computing resources of the Supercomputing Laboratory and the Extreme Computing Research Center at King Abdullah University of Science and Technology. This research was supported by Hong Kong Innovation and Technology Commission (no. ITS/334/15FP) and Natural Science Foundation of China project, numbered 11372265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, L.S., Zhang, P., Wen, C.Y., Shen, H., Parsani, M., Zhang, D.L. (2019). Numerical Study of Hydrogen–Air Detonation in Vibrational Non-equilibrium. In: Sasoh, A., Aoki, T., Katayama, M. (eds) 31st International Symposium on Shock Waves 2. ISSW 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-91017-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91017-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91016-1

  • Online ISBN: 978-3-319-91017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics