Advertisement

Simulation of Shear Motion of Angular Grains Massif via the Discrete Element Method

  • Sergiy Mykulyak
  • Vasyl Kulich
  • Sergii Skurativskyi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

Dynamics of granular materials is a challenge for predictability of their response under dynamic load due to the complex behavior of granular systems. In this report, we consider the granular system composed of the polyhedral particles, namely cubes, and study system’s dynamics via the discrete element method which allows us to describe the interactions between cubes in detail. On the base of modeling the shear motion of granular medium, the statistical laws of multiparticle system dynamics are observed. These studies are extremely important for the geophysics, material science, etc.

Keywords

Granular media Discrete element method Shear 

References

  1. 1.
    Behringer, R.P., Howell, D., Kondic, L., Tennakoon, S., Veje, C.: Predictability and granular materials. Physica D 133, 1–17 (1999)CrossRefGoogle Scholar
  2. 2.
    Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82(26), 5241–5244 (1999)CrossRefGoogle Scholar
  3. 3.
    Cabalar, A.F.: Stress fluctuations in granular material response during cyclic direct shear test. Granul. Matter 17(4), 439–446 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fu, Y., Wang, L., Zhou, C.: 3D clustering DEM simulation and non-invasive experimental verification of shear localisation in irregular particle assemblies. Int. J. Pavement Eng. 11(5), 355–365 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhao, S., Zhou, X., Liu, W.: Discrete element simulations of direct shear tests with particle angularity effect. Granul. Matter 17(6), 793–806 (2015)CrossRefGoogle Scholar
  6. 6.
    Nguyen, D.-H., Azema, E., Sornay, P., Radjai, F.: Effects of shape and size polydispersity on strength properties of granular materials. Phys. Rev. E 91, 032203 (2015)CrossRefGoogle Scholar
  7. 7.
    Mahajan, A., Kaur, M.: Various approaches of community detection in complex networks: a glance. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 8(4), 35–41 (2016).  https://doi.org/10.5815/ijitcs.2016.04.05CrossRefGoogle Scholar
  8. 8.
    Gudnavar, A., Rajashekhara: Exploring an effectiveness & pitfalls of correlational-based data aggregation approaches in sensor network. Int. J. Wireless Microwave Technol. (IJWMT) 7(2), 44–56 (2017).  https://doi.org/10.5815/ijwmt.2017.02.05CrossRefGoogle Scholar
  9. 9.
    Jain, A., Tyagi, S.: Priority based new approach for correlation clustering. I. J. Inf. Technol. Comput. Science 3, 71–79 (2017)Google Scholar
  10. 10.
    Cundall, P.A.: A computer model for simulating progressive large-scale movements in blocky rock systems. In: Proceedings of International Symposium Rock Fracture, pp. 2–8. ISRM, Nancy (1971)Google Scholar
  11. 11.
    Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1997)zbMATHGoogle Scholar
  12. 12.
    Beeman, D.: Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. 20(2), 130–139 (1976)CrossRefGoogle Scholar
  13. 13.
    Lee, Y., Fang, C., Tsou, Y.-R., Lu, L.-S., Yang, C.-T.: A packing algorithm for three-dimensional convex particles. Granul. Matter 11(5), 307–315 (2009)CrossRefGoogle Scholar
  14. 14.
    Nassauer, B., Liedke, T., Kuna, M.: Polyhedral particles for the discrete element method. Granul. Matter 15(1), 85–93 (2013)CrossRefGoogle Scholar
  15. 15.
    Shakarji, C.V.: Least-squares fitting algorithms of the NIST algorithm testing system. J. Res. Natl. Inst. Stand. Technol. 103(6), 633–641 (1998)CrossRefGoogle Scholar
  16. 16.
    Forsythe, G.E., Malcolm, M.A., Moler, C.B.: Computer Methods for Mathematical Computations. Prentice Hall, Inc., Englewood Cliffs (1977)Google Scholar
  17. 17.
    Nassauer, B., Kuna, M.: Contact forces of polyhedral particles in discrete element method. Granul. Matter 15(3), 349–355 (2013)CrossRefGoogle Scholar
  18. 18.
    Jensen, H.J.: Self–Organized Criticality. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Sergiy Mykulyak
    • 1
  • Vasyl Kulich
    • 1
  • Sergii Skurativskyi
    • 1
  1. 1.Institute of Geophysics NAS of UkraineKyivUkraine

Personalised recommendations