Skip to main content

Multidimensional Wavelet Neuron for Pattern Recognition Tasks in the Internet of Things Applications

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education (ICCSEEA 2018)

Abstract

Data mining and processing of Big Data is key problem in developing intelligent Internet of Things (IoT) applications. In this article, the multidimensional wavelet neuron for pattern recognition tasks is proposed. Also, the learning algorithm based on the quadratic error criterion is synthesized. This approach combines the benefits of the neural networks, the neuro-fuzzy system, and the wavelet functions approximation. The proposed multidimensional wavelet neuron can be used to solve a very large class of information processing problems for the Internet of Things applications when signals are fed in online mode from many sensors. The proposed approach is uncomplicated for computational realization and can be implemented in hardware for IoT systems. The proposed learning algorithm is characterized by a high rate of convergence and high approximation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P.: Machine learning for Internet of Things data analysis: a survey. Dig. Commun. Netw. (in Press, 2017)

    Google Scholar 

  2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  3. Cecchinel, C., Jimenez, M., Mosser, S., Riveill, M.: An architecture to support the collection of big data in the Internet of Things. In: Proceedings of 2014 IEEE World Congress on Services, pp. 442–449 (2014)

    Google Scholar 

  4. Joakar, A.: A methodology for solving problems with data science for Internet of Things. Data Science for Internet of Things. https://www.datasciencecentral.com/profiles/blogs/a-methodology-for-solving-problems-with-datascience-for-internet. Accessed 27 Nov 2017

  5. Ni, P., Zhang, C., Ji, Y.: A hybrid method for short-term sensor data forecasting in Internet of Things. In: Proceedings of 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 369–373 (2014)

    Google Scholar 

  6. Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for smarter Internet of Things (IoT). Procedia Comput. Sci. 98, 437–442 (2016)

    Article  Google Scholar 

  7. Bodyanskiy, Y., Vynokurova, O., Pliss, I., Peleshko, D.: Hybrid adaptive systems of computational intelligence and their on-line learning for green it in energy management tasks In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Concepts, Models, Complex Systems Architectures. Studies in Systems, Decision and Control, vol. 74, pp. 229–244. Springer, Cham (2017)

    Google Scholar 

  8. Peleshko, D., Peleshko, M., Kustra, N., Izonin, I.: Analysis of invariant moments in tasks image processing. In: Proceedings of 2011 11th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), Polyana-Svalyava, pp. 263–264 (2011)

    Google Scholar 

  9. Ivanov, Y., Peleshko, D., Makoveychuk, O., Izonin I., Malets I., Lotoshunska, N, Batyuk, D. Adaptive moving object segmentation algorithms in cluttered environments. In.: Proceedings of 2015 15th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), Lviv, pp. 97–99 (2015)

    Google Scholar 

  10. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Berlin (2008)

    Book  Google Scholar 

  11. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Murphy K.P.: Machine Learning: a Probabilistic Perspective. MIT Press (2012)

    Google Scholar 

  13. Bodyanskiy, Y.V., Vynokurova, O.A., Dolotov, A.I.: Self-learning cascade spiking neural network for fuzzy clustering based on group method of data handling. J. Autom. Inf. Sci. 45, 23–33 (2013)

    Article  Google Scholar 

  14. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Tkachov, V.M.: Fuzzy clustering data arrays with omitted observations. Int. J. Intell. Syst. Appl. (IJISA) 9(6), 24–32 (2017). https://doi.org/10.5815/ijisa.2017.06.03

    Article  Google Scholar 

  15. Bodyanskiy, Y., Vynokurova, O., Setlak, G., Peleshko, D., Mulesa, P.: Adaptive multivariate hybrid neuro-fuzzy system and its on-board fast learning. Neurocomputing 230, 409–416 (2017)

    Article  Google Scholar 

  16. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Possibilistic fuzzy clustering for categorical data arrays based on frequency prototypes and dissimilarity measures. Int. J. Intell. Syst. Appl. (IJISA) 9(5), 55–61 (2017). https://doi.org/10.5815/ijisa.2017.05.07

    Article  Google Scholar 

  17. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Fuzzy clustering data given on the ordinal scale based on membership and likelihood functions sharing. Int. J. Intell. Syst. Appl. (IJISA) 9(2), 1–9 (2017). https://doi.org/10.5815/ijisa.2017.02.01

    Article  Google Scholar 

  18. Babichev, S., Taif, M.A., Lytvynenko, V.: Inductive model of data clustering based on the agglomerative hierarchical algorithm. In: Proceedings of 2016 IEEE 1st International Conference on Data Stream Mining and Processing, DSMP 2016, pp. 19–22 (2016)

    Google Scholar 

  19. Babichev, S., Taif, M.A., Lytvynenko, V., Osypenko, V.: Criterial analysis of gene expression sequences to create the objective clustering inductive technology. In: Proceedings of 2017 IEEE 37th International Conference on Electronics and Nanotechnology, ELNANO 2017, pp. 244–248 (2017)

    Google Scholar 

  20. Bodyanskiy, Y., Vynokurova, O., Pliss, I., Setlak, G., Mulesa, P.: Fast learning algorithm for deep evolving GMDH-SVM neural network in data stream mining tasks. In.: Proceedings of 2016 IEEE 1st International Conference on Data Stream Mining and Processing, DSMP 2016, pp. 257–262 (2016)

    Google Scholar 

  21. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Fuzzy clustering data given in the ordinal scale. Int. J. Intell. Syst. Appl. (IJISA) 9(1), 67–74 (2017). https://doi.org/10.5815/ijisa.2017.01.07

    Article  Google Scholar 

  22. Bodyanskiy, Y., Setlak, G., Peleshko, D., Vynokurova, O.: Hybrid generalized additive neuro-fuzzy system and its adaptive learning algorithms. In: Proceedings of 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS, pp. 328–333 (2015)

    Google Scholar 

  23. Perova, I., Pliss, I.: Deep hybrid system of computational intelligence with architecture adaptation for medical fuzzy diagnostics. Int. J. Intell. Syst. Appl. (IJISA) 9(7), 12–21 (2017). https://doi.org/10.5815/ijisa.2017.07.02

    Article  Google Scholar 

  24. Bin, S., Yuan, L., Xiaoyi, W.: Research on data mining models for the internet of things. In: Proceedings of 2010 IEEE International Conference on Image Analysis and Signal Processing, pp. 127–132 (2010)

    Google Scholar 

  25. Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A.V., Rong, X.: Data mining for the internet of things: literature review and challenges. Int. J. Distrib. Sens. Netw. 11(8), 1–14 (2015)

    Google Scholar 

  26. Tsai, C.-W., Lai, C.-F., Chiang, M.-C., Yang, L.T.: Data mining for internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 77–97 (2014)

    Article  Google Scholar 

  27. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of 905 Things for smart cities. IEEE Internet of Things J. 1(1), 22–32 (2014)

    Article  Google Scholar 

  28. Bodyanskiy, Y., Lamonova, N., Pliss, I., Vynokurova, O.: An adaptive learning algorithm for a wavelet neural network. Exp. Syst. 22(5), 235–240 (2005)

    Article  Google Scholar 

  29. Yamakawa, T., Uchino, E., Miki, T., Kusanagi, H.: A neo-fuzzy neuron and its application to system identification and prediction of the system behavior. In: Proceedings of 2nd International Conference on Fuzzy Logic and Neural Networks, pp. 477–483, Iizuka, Japan (1992)

    Google Scholar 

  30. Miki, I., Yamakawa, I.: Analog implementation of neo-fuzzy neuron and its on-board learning. In: Computational Intelligence and Applications. pp. 144–149. WSES Press, Piraeus (1999)

    Google Scholar 

  31. Mitaim, S., Kosko, B.: What is the best shape for a fuzzy set in function approximation? In: Proceedings of 5th IEEE International Conference on Fuzzy Systems, Fuzz 1996, vol. 2, pp. 1237–1213 (1996)

    Google Scholar 

  32. Shepherd, A.J.: Second-Order Methods for Neural Networks. Springer, London (1997)

    Book  Google Scholar 

  33. Bodyanskiy, Y., Kolodyazhniy, V., Stephan, A.: An adaptive learning algorithm for a neuro-fuzzy network. In: Reusch, B. (eds.) Computational Intelligence. Theory and Applications. Fuzzy Days 2001. LNCS, vol. 2206, pp. 68–75. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  34. Goodwin, G.C., Ramadge, P.J., Caines, P.E.: A globally convergent adaptive predictor. Automatica 17(1), 135–140 (1981)

    Article  MathSciNet  Google Scholar 

  35. MNIST Homepage. http://yann.lecun.com/exdb/mnist/. Accessed 19 Nov 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Vynokurova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vynokurova, O., Peleshko, D., Oskerko, S., Lutsan, V., Peleshko, M. (2019). Multidimensional Wavelet Neuron for Pattern Recognition Tasks in the Internet of Things Applications. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-91008-6_7

Download citation

Publish with us

Policies and ethics