Mathematical Modeling of Blood Vessel Stenosis and Their Impact on the Blood Vessel Wall Behavior

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

This article presents experimental result and mathematical analysis of the blood vessel stenosis influences on blood vessel wall behavior by the action of blood circulation. Stenosis leads to less vessel wall segment stretching depending on size and stiffness of vessel segment with stenosis. During the research, the MRI data processing approaches were performed to get blood vessel through-time behavior information and simplified model of blood vessel behavior was determined for obtained information processing to detect stenosis automatically. The results determined empirical dependences, which are necessary for the scientific study of blood vessel behavior. Mathematical analysis of research data was also carried out. Research results are compared with expert’s opinion about stenosis segment of blood vessel’s projection.

Keywords

Stenosis MRI Spring model of blood vessel wall Blood vessel mathematical and physical modeling 

References

  1. 1.
    Gourav, Sharma, T., Singh, H.: Computational approach to image segmentation analysis. Int. J. Modern Educ. Comput. Sci. (IJMECS) 9(7), 30–37 (2017).  https://doi.org/10.5815/ijmecs.2017.07.04CrossRefGoogle Scholar
  2. 2.
    Gupta, S., Porwal, R.: Implementing blind de-convolution with weights on x-ray images for lesser ringing effect. Int. J. Image Graph. Signal Process. (IJIGSP) 8(8), 30–36 (2016).  https://doi.org/10.5815/ijigsp.2016.08.05CrossRefGoogle Scholar
  3. 3.
    Bajaj, K., Kaur, N.: Integrated gabor filter and trilateral filter for exudate extraction in fundus images. Int. J. Image Graph. Signal Process. (IJIGSP) 9(1), 10–17 (2017).  https://doi.org/10.5815/ijigsp.2017.01.02CrossRefGoogle Scholar
  4. 4.
    Isah, R.O., Usman, A.D., Tekanyi, A.M.S.: Medical image segmentation through bat-active contour algorithm. Int. J. Intell. Syst. Appl. (IJISA) 9(1), 30–36 (2017).  https://doi.org/10.5815/ijisa.2017.01.03CrossRefGoogle Scholar
  5. 5.
    Suprijadi, Sentosa, M.R.A., Subekti, P., Viridi, S.: Application of computational physics: blood vessel constrictions and medical infuses. In: AIP Conference Proceedings, vol. 1587, no. 1, pp. 3–6 (2013)Google Scholar
  6. 6.
    Wihandika, R.C., Suciati, N.: Retinal blood vessel segmentation with optic disc pixels exclusion. Int. J. Image Graph. Signal Process. (IJIGSP) 5(7), 26–33 (2013).  https://doi.org/10.5815/ijigsp.2013.07.04CrossRefGoogle Scholar
  7. 7.
    Feldman, L.P., Petrenko, A.I., Dmytriieva, O.A:. Chyselni metody v informatytsi. Vydavnycha hrupa BHV, p. 480 (2006)Google Scholar
  8. 8.
    Kalitkin, N.N.: Chislennye metody. Nauka, p. 512 (1978)Google Scholar
  9. 9.
    Kittel’, C., Nait, U., Ruderman, M.: Berkleevskii kurs fiziki. Tom 1. Mekhanika. Nauka, p. 479 (1971)Google Scholar
  10. 10.
    Venttsel’, A.D.: Kurs teorii sluchainykh protsessov. Fizmatlit, p. 399 (1978)Google Scholar
  11. 11.
    Kobzar’, A.I.: Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. FIZMATLIT, p. 816 (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations