Method for Research of the Human Static Equilibrium Function

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

The paper deals with problems of determination of the informative indices, which characterize the function of the human balance (human static equilibrium). The kefalographic method for research of the human static equilibrium is suggested. The kefalographic plant for this method implementation was modified. The informative indices, which characterize the space dynamic range and features of the human body oscillations relative to the axis z, were determined. Such indices represent the coefficients, which characterize changes of the sampling mathematical expectation \( K_{{\tilde{m}_{r} }} \), variance \( K_{{\tilde{D}_{r} }} \), skewness \( K_{{\tilde{a}_{r} }} \) and kurtosis \( K_{{\tilde{e}_{r} }} \) for the vector projection of central position the human body.

Keywords

Kefalography Informative indices Statistic characteristics Human static equilibrium Distribution law Human extreme activity 

References

  1. 1.
    Bazarov, V.G.: Clinical Vestibulometry. Zdorovie, Kyiv (1988). (in Russian)Google Scholar
  2. 2.
    Barilyak, P.A., Kitsera, A.E., Borisov, A.V.: Improvement of the kephalography method. J. Aural Nasal Guttural Dis. 6, 66–67 (1981). (in Russian)Google Scholar
  3. 3.
    Gazhe, P.M., Veber, B.: Post-Urology. Regulation and Disequilibrium of Human Body. SPbMAPO, St-Peterburg (2008). (In Russian).Google Scholar
  4. 4.
    Rather, N.N., Patel, C.O., Khan, S.A.: Using deep learning towards biomedical knowledge discovery. Int. J. Math. Sci. Comput. (IJMSC) 3(2), 1–10 (2017).  https://doi.org/10.5815/ijmsc.2017.02.01CrossRefGoogle Scholar
  5. 5.
    Chaudhry, H., Bukiet, B., Ji, Z., Findley, T.: Measurement of balance in computer posturography: comparison of methods. a brief review. J. Bodyw. Mov. Ther. 15(1), 82–91 (2011)CrossRefGoogle Scholar
  6. 6.
    Chiari, L., Rocchi, L., Cappello, A.: Stabilometric parameters are affected by anthropometry and foot placement. Clin. Biomech. 17(9), 666–677 (2002)CrossRefGoogle Scholar
  7. 7.
    Kaur, S., Malhotra, J.: On statistical behavioral investigations of body movements of human body area channel. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 8(10), 29–36 (2016).  https://doi.org/10.5815/ijcnis.2016.10.04CrossRefGoogle Scholar
  8. 8.
    Maatar, D., Fournier, R., Naitali, A., Lachiri, Z.: Human balance and stability behavior analysis using spatial and temporal stabilometric parameters. Int. J. Image Graph. Signal Process. (IJIGSP) 5(6), 33–42 (2013).  https://doi.org/10.5815/ijigsp.2013.06.05CrossRefGoogle Scholar
  9. 9.
    Visser, J.E., Carpenter, M.G., van der Kooij, H., Bloem, B.R.: The clinical utility of posturography. Clin. Neurophysiol. 119(11), 2424–2436 (2008)CrossRefGoogle Scholar
  10. 10.
    Maatar, D., Lachiri, Z., Fournier, R., Nait-Ali, A.: Stabilogram mPCA decomposition and effects analysis of several entries on the postural stability. Int. J. Image Graph. Signal Process. (IJIGSP) 4(5), 21–30 (2012).  https://doi.org/10.5815/ijigsp.2012.05.03CrossRefGoogle Scholar
  11. 11.
    Tossavainen, T., Toppila, E., Pyykkö, I., Forsman, P.M., Juhola, M., Starck, J.: Virtual reality in posturography. IEEE Trans. Inf Technol. Biomed. 10(2), 282–292 (2006)CrossRefGoogle Scholar
  12. 12.
    Prieto, T.E., Myklebust, J.B., Hoffmann, R.G., Lovett, E.G., Myklebust, B.M.: Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 43(9), 956–966 (1996)CrossRefGoogle Scholar
  13. 13.
    Onykiienko, Y.Y., Kuzovik, V.D.: Hardware-software complex of estimation of operator psychophysiological state. In: Newest Scientific-Educational Achievements in Transport Medicine, pp. 109–111 (2011). (In Russian)Google Scholar
  14. 14.
    Onykiienko, Y.Y., Kuzovik, V.D.: Hardware-software system of evaluation criteria of the additional information CNS. In: Proceedings of Sixth World Congress “Aviation in the XXI-st Century” “Safety in Aviation and Space Technologies”, Kyiv, 23–25 September, pp. 1.7.23–1.7.25 (2014)Google Scholar
  15. 15.
    Sharma, G.: Performance analysis of image processing algorithms using matlab for biomedical applications. Int. J. Eng. Manuf. (IJEM) 7(3), 8–19 (2017).  https://doi.org/10.5815/ijem.2017.03.02CrossRefGoogle Scholar
  16. 16.
    Volodarsky, E.T., Koshova, L.O.: Statistical Data Processing, vol. 308. National Aviation University, Kyiv. (in Ukrainian)Google Scholar
  17. 17.
    Goswami, S., Chakraborty, S., Saha, H.N.: An univariate feature elimination strategy for clustering based on metafeatures. Int. J. Intell. Syst. Appl. (IJISA) 9(10), 20–30 (2017).  https://doi.org/10.5815/ijisa.2017.10.03CrossRefGoogle Scholar
  18. 18.
    Mandel, J.: The Statistical Analysis of Experimental Data. Courier Corporation, Mineola (2012)Google Scholar
  19. 19.
    Johnson, R.A., et al.: Applied Multivariate Statistical Analysis. Prentice hall, Englewood Cliffs (1992)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Aviation UniversityKyivUkraine

Personalised recommendations