Advertisement

The Study of Visual Self-adaptive Controlled MeanShift Algorithm

  • P. H. Wu
  • G. Q. Hu
  • D. Wang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

This paper proposed a self-adaptive visual control system which is controlled by human eyes, the visual image tracking algorithm utilized by this system is also introduced in this paper. Through eye-gaze detection and electrical device control corresponding, it will automatically respond to the provided interface. This paper mainly introduces helmets and remote vision-based eye-gaze tracking algorithms; the algorithm has good performance in aspects of usability and adaptability.

Keywords

Eye tracking Eye-gaze Helmet MeanShift algorithm 

References

  1. 1.
    Wooding, D.S., Mugglestone, M.D., Purdy, K.J., Gale, A.G.: Eye movements of large populations: I. implementation and performance of an autonomous public eye tracker. Behav. Res. Methods Instrum. Comput. 34(4), 509–517 (2002)CrossRefGoogle Scholar
  2. 2.
    Comaniciu, D., Meer, P.: MeanShift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  3. 3.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)CrossRefGoogle Scholar
  4. 4.
    Javed, A., Aslam, Z.: An intelligent alarm based visual eye tracking algorithm for cheating free examination system. Int. J. Intell. Syst. Appl. (IJISA) 5(10), 86–92 (2013).  https://doi.org/10.5815/ijisa.2013.10.11CrossRefGoogle Scholar
  5. 5.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using MeanShift, pp. 142–149 (2000)Google Scholar
  6. 6.
    Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust mean-shift tracking with corrected background-weighted histogram. Comput. Vis. IET 6(1), 62–69 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kailath, T.: The divergence and bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15, 52–60 (1967)CrossRefGoogle Scholar
  8. 8.
    Lipton, A.J., Fujiyoshi, H., Patil, R.S.: Moving target classification and tracking from real-time video. In: IEEE Workshop on Applications of Computer Vision, Princeton, pp. 8–14 (1998)Google Scholar
  9. 9.
    Pu, X., Zhou, Z.: A more robust MeanShift tracker on joint color-CLTP histogram. Int. J. Image Graph. Signal Process. (IJIGSP) 4(12), 34–42 (2012).  https://doi.org/10.5815/ijigsp.2012.12.05CrossRefGoogle Scholar
  10. 10.
    McKenna, S.J., Raja, Y., Gong, S.: Tracking color objects using adaptive mixture models. Image Vis. Comput. 17, 223–229 (1999)CrossRefGoogle Scholar
  11. 11.
    Paragios, N., Deriche, R.: Geodesic active regions for motion estimation and tracking. In: IEEE International Conference on Computer Vision, Kerkyra, Greece, pp. 688–674 (1999)Google Scholar
  12. 12.
    Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses. IEEE Trans. PAMI 21, 476–480 (1999)CrossRefGoogle Scholar
  13. 13.
    Snekha, S.C., Birok, R., et al.: Real time object tracking using different MeanShift techniques–a review. Int. J. Soft Comput. Eng. (IJSCE) 3(3), 98–102 (2013). ISSN 2231-2307Google Scholar
  14. 14.
    Jatoth, R.K., Gopisetty, S., Hussain, M.: Performance analysis of Alpha Beta filter, Kalman filter and MeanShift for object tracking in video sequences. Int. J. Image Graph. Signal Process. (IJIGSP) 7(3), 24–30 (2015).  https://doi.org/10.5815/ijigsp.2015.03.04CrossRefGoogle Scholar
  15. 15.
    Kim, P., Chang, H., Song, D., et al.: Fast support vector data description using k-means clustering. In: Advances in Neural Networks, pp. 506–514 (2007)Google Scholar
  16. 16.
    Dong, Y., Jae, K., Bang Rae, L., et al.: Non-contact eye gaze tracking system by mapping of corneal reflections. In: Proceeding of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, vol. 5, pp. 94–99 (2002)Google Scholar
  17. 17.
    Jahangir Alam, S.M.: Based on Arithmetic Study of Image Processing and Recognition for Mosquito Detecting and Position Tracking. Xiamen University (2014)Google Scholar
  18. 18.
    Mallikarjuna Rao, G., Satyanarayana, C.: Object tracking system using approximate median filter, Kalman filter and dynamic template matching. Int. J. Intell. Syst. Appl. (IJISA) 6(5), 83–89 (2014).  https://doi.org/10.5815/ijisa.2014.05.09CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.South China University of TechnologyGuangzhouChina
  2. 2.Guangzhou Huashang Vocational CollegeGuangzhouChina

Personalised recommendations