The Designing and Research of Generators of Poisson Pulse Sequences on Base of Fibonacci Modified Additive Generator

  • Volodymyr Maksymovych
  • Oleh Harasymchuk
  • Ivan Opirskyy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)


The article presents principles of optimizing the parameters of structural elements of Poisson pulses sequence generator that is based on modified additive Fibonacci generator. The results of their simulation modeling show, that statistical characteristics of output pulse sequence correspond to Poisson law of distribution. In addition, in this article have been defined the limits of control code for concrete parameters of structural scheme.


Generators of Poisson pulse sequences Fibonacci modified additive generator Registers Poisson law Statistical characteristics Binary code Poisson pulse sequence 


  1. 1.
    Harasymchuk, O.I., Maksymovych, V.M.: Algorithm for the formation of a Poisson pulse stream. Autom. Measur. Control 475, 21–25 (2003)Google Scholar
  2. 2.
    Harasymchuk, O.I., Dudykevych, V.B., Maksymovych, V.M., Smuk, R.T.: Generators of test pulse sequences for dosimetric devices. Heat power Environ. Eng. Autom. 506, 186–192 (2004)Google Scholar
  3. 3.
    Ivanov, M.A., Chugunkov, I.V.: Theory, Application and Quality Assessment of Pseudo-Random Sequence Generators. The Technical Writer’s Handbook (2003). 240 p.Google Scholar
  4. 4.
    Hu, Z., Mukhin, V., Kornaga, Y., Lavrenko, Y., Barabash, O., Herasymenko, O.: Analytical assessment of security level of distributed and scalable computer systems. Int. J. Intell. Syst. Appl. (IJISA) 8(12), 57–64 (2016). Scholar
  5. 5.
    Harasymchuk, O.I., Maksymovych, V.M.: Generators of pseudorandom numbers, their application, classification, basic methods of construction and evaluation of quality. J. Inf. Prot. 3, 29–36 (2003)Google Scholar
  6. 6.
    Gaeini, A., Mirghadri, A., Jandaghi, G., Keshavarzi, B.: Comparing some pseudo-random number generators and cryptography algorithms using a general evaluation pattern. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 8(9), 25–31 (2016). Scholar
  7. 7.
    Aluru, S.: Lagged Fibonacci random number generators for distributed memory parallel. Comput. J. Parallel Distrib. Comput. 45, 1–12 (1997)CrossRefGoogle Scholar
  8. 8.
    Wani, A.A., Badshah, V.H.: On the relations between lucas sequence and Fibonacci-like sequence by matrix methods. Int. J. Math. Sci. Comput. (IJMSC), 3(4), 20–36 (2017). Scholar
  9. 9.
    Harasymchuk, O.I., Kostiv, Y., Maksymovych, V.M., Mandrona, M.M.: Hardware implementation and research of Fibonacci generators. Comput. Technol. Printing 29, 167–174 (2013)Google Scholar
  10. 10.
    Mondal, A., Pujari, S.: A novel approach of image based steganography using pseudorandom sequence generator function and DCT coefficients. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 7(3), 42–49 (2015). Scholar
  11. 11.
    Harasymchuk, O.I., Kostiv, Y., Maksymovych, V.M., Mandrona, M.M.: Implementation of modified additive lagged Fibonacci generator. Challenges Mod. Technol. 7(1), 3–6 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Volodymyr Maksymovych
    • 1
  • Oleh Harasymchuk
    • 1
  • Ivan Opirskyy
    • 1
  1. 1.National University “Lviv Polytechnic”LvivUkraine

Personalised recommendations