Statistic Properties and Cryptographic Resistance of Pseudorandom Bit Sequence Generators

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

Generators of pseudorandom sequences are widely used in practice. Generators of pseudorandom bit sequences occupy a special place among them; they are necessary for solving a number of important tasks, for example, for strong cryptography. The impossibility of predicting the following values of pseudorandom sequences is one of the basic requirements for such generators. Otherwise, these generators cannot be used to protect of information. It is generally accepted that if the stochastic sequence is stationary, then the prediction of such sequence is impossible. Our research shows that there are invariants for specific pseudorandom sequences that can be used to this prediction.

The article is devoted to the method of prediction of pseudorandom bit sequences. The values of the autocorrelation coefficients for some lags are used. Good results are obtained for software-implemented stationary stochastic sequences.

Keywords

Autocorrelation Pseudorandom bit sequence Statistical portrait Cryptographically strong generator 

References

  1. 1.
    Chethan, J., Lakkannavar, M.: Design of low power test pattern generator using low transition LFSR for high fault coverage analysis. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 5(2), 15–21 (2013).  https://doi.org/10.5815/ijieeb.2013.02.03CrossRefGoogle Scholar
  2. 2.
    Ivanov, M.A., Chugunkov, I.V.: Cryptographic methods of information protection in computer systems and networks: a teaching manual. NIUA MIFI, Moscow (in Russian) (2012)Google Scholar
  3. 3.
    Jhansirani, A., Harikishore, K., Basha, F., et al.: Fault tolerance in bit swapping LFSR using FPGA architecture. Int. J. Eng. Res. Appl. 2(1), 1080–1087 (2012)Google Scholar
  4. 4.
    Kitsos, O., Sklava, P., Zervas, N., et al.: A reconfigurable linear feedback shift register (LFSR) for the bluetooth system. ICECS (2001).  https://doi.org/10.1109/ICECS.2001.957640CrossRefGoogle Scholar
  5. 5.
    Klapper, A., Goresky, M.: 2-Adic shift registers. In: Fast Software Encryption, Cambridge Security Workshop Proceedings, pp. 174–178. Springer (1994)CrossRefGoogle Scholar
  6. 6.
    Maksymovych, V., Shevchuk, M., Mandrona, M.: Research pseudorandom bit sequence generators based on LFSR. J. Autom. Measur. Control 852, 29–34 (2016). (in Ukraine)Google Scholar
  7. 7.
    Maksymovych, V., Mandrona, M.: Investigation of the statistical characteristics of the modified fibonacci generators. J. Autom. Inf. Sci. (2014).  https://doi.org/10.1615/JAutomatInfScien.v46.i12.60CrossRefGoogle Scholar
  8. 8.
    Maksymovych, V., Mandrona, M.: Comparative analysis of pseudorandom bit sequence generators. J. Autom. Inf. Sci. (2017).  https://doi.org/10.1615/JAutomatInfScien.v49.i3.90CrossRefGoogle Scholar
  9. 9.
    Maksymovych, V., Mandrona, M., Garasimchuk, O., Kostiv, Yu.: A study of the characteristics of the fibonacci modified additive generator with a delay. J. Autom. Inf. Sci. (2016).  https://doi.org/10.1615/JAutomatInfScien.v48.i11.70CrossRefGoogle Scholar
  10. 10.
    Ali, M.A., Ali, E., Habib, M.A., Nadim, M., Kusaka, T., Nogami, Y.: Pseudo random ternary sequence and its autocorrelation property over finite field. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(9), 54–63 (2017).  https://doi.org/10.5815/ijcnis.2017.09.07 CrossRefGoogle Scholar
  11. 11.
    Milovanovic, E., Stojcev, M., Milovanovic, I., et al.: Concurrent generation of pseudo random numbers with LFSR of fibonacci and galois type. Comput. Inform. 34, 941–958 (2015)MathSciNetGoogle Scholar
  12. 12.
    Mondal, A., Pujari, S.: A novel approach of image based steganography using pseudorandom sequence generator function and DCT coefficients. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 7(3), 42–49 (2015).  https://doi.org/10.5815/ijcnis.2015.03.06CrossRefGoogle Scholar
  13. 13.
    Nas, R.J., Van Berkel, C.H.: High throughput, low set-up time, reconfigurable linear feedback shift registers. In: International Conference on Computer Design (2010).  https://doi.org/10.1109/iccd.2010.5647572
  14. 14.
    Ndaw, B.A., Sow, D., Sanghare, M.: Construction of the maximum period linear feedback shift registers (LFSR) (Primitive Polynomials and Linear Recurring Relations). Br. J. Math. Comput. Sci. (2015).  https://doi.org/10.9734/BJMCS/2015/19442CrossRefGoogle Scholar
  15. 15.
    NIST SP 800-22. A Statistic Test Suite for Random and Pseudorandom Number Generators for Cryptographic Application. DIALOG: http://csrc.nist.gov/publications/niatpubs/SP800-22rev1a.pdf. Accessed Apr 2000
  16. 16.
    Nanda, S.K., Tripathy, D.P., Nayak, S.K., Mohapatra, S.: Prediction of rainfall in india using artificial neural network (ANN) models. Int. J. Intell. Syst. Appl. (IJISA) 5(12), 1–22 (2013).  https://doi.org/10.5815/ijisa.2013.12.01CrossRefGoogle Scholar
  17. 17.
    Schneier, B.: Applied cryptography, protocols, and algorithms for source code in C. Triumph, Moscow (2002). (in Russia)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computer Technologies, Automation and MetrologyLviv Polytechnic National UniversityLvivUkraine

Personalised recommendations