NP-Hard Scheduling Problems in Planning Process Automation in Discrete Systems of Certain Classes

  • Alexander Anatolievich Pavlov
  • Elena Borisovna Misura
  • Oleg Valentinovich Melnikov
  • Iryna Pavlovna Mukha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

In this paper, we consider an intractable problem of total tardiness of tasks minimization on single machine. The problem has a broad applications solutions during planning process automation in systems in various spheres of human activity. We investigate the solutions obtained by the exact algorithm for this problem earlier developed by M.Z. Zgurovsky and A.A. Pavlov. We propose an efficient approximation algorithm with \( O\left( {n^{2} } \right) \) complexity with estimate of the maximum possible deviation from optimum. We calculate the estimate separately for each problem instance. Based on this estimate, we construct an efficient estimate of the deviation from the optimum for solutions obtained by any heuristic algorithms. Our statistical studies have revealed the conditions under which our approximation algorithm statistically significantly yields a solution within 1–2% deviation from the optimum, presumably for any problem size. This makes possible obtaining efficient approximate solutions for real practical size problems that cannot be solved with known exact methods.

Keywords

Planning Process automation Scheduling Combinatorial optimization Heuristics Exact algorithm Estimate of deviation Total tardiness 

References

  1. 1.
    Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26580-3
  2. 2.
    Zgurovsky, M.Z., Pavlov, A.A.: Prinyatie resheniy v setevyh sistemah s ogranichennymi resursami: Monograph. Naukova dumka, Kiev (2010). (in Russian)Google Scholar
  3. 3.
    Alhumrani, S.A., Qureshi, R.J.: Novel approach to solve resource constrained project scheduling problem (RCPSP). Int. J. Mod. Educ. Comput. Sci. (IJMECS) 8(9), 60–68 (2016).  https://doi.org/10.5815/ijmecs.2016.09.08CrossRefGoogle Scholar
  4. 4.
    Vollmann, T.E., Berry, W.L., Whybark, D.C.: Manufacturing Planning and Control Systems. McGraw-Hill, Boston (2005)Google Scholar
  5. 5.
    Popinako, D.: ERP-rynok glazami veterana. SK-Press, Kiev, PC Week-Ukr (2011). (in Russian)Google Scholar
  6. 6.
    Zagidullin, R.R.: Upravlenie mashinostroitelnym proizvodstvom s pomoschyu sistem MES, APS, ERP. TNT, Staryi Oskol (2011). (in Russian)Google Scholar
  7. 7.
    Zagidullin, R.R.: Planirovanie mashinostroitelnogo proizvodstva. TNT, Staryi Oskol (2017). (in Russian)Google Scholar
  8. 8.
    Swayamsiddha, S., Parija, S., Sahu, P.K., Singh, S.S.: Optimal reporting cell planning with binary differential evolution algorithm for location management problem. Int. J. Intell. Syst. Appl. (IJISA) 9(4), 23–31 (2017).  https://doi.org/10.5815/ijisa.2017.04.03CrossRefGoogle Scholar
  9. 9.
    Soudi, S.: Distribution system planning with distributed generations considering benefits and costs. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 5(9), 45–52 (2013).  https://doi.org/10.5815/ijmecs.2013.09.07CrossRefGoogle Scholar
  10. 10.
    Garg, R., Singh, A.K.: Enhancing the discrete particle swarm optimization based workflow grid scheduling using hierarchical structure. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5(6), 18–26 (2013).  https://doi.org/10.5815/ijcnis.2013.06.03CrossRefGoogle Scholar
  11. 11.
    Soltani, N., Soleimani, B., Barekatain, B.: Heuristic algorithms for task scheduling in cloud computing: a survey. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(8), 16–22 (2017).  https://doi.org/10.5815/ijcnis.2017.08.03CrossRefGoogle Scholar
  12. 12.
    Szwarc, W., Grosso, A., Della Croce, F.: Algorithmic paradoxes of the single machine total tardiness problem. J. Sched. 4(2), 93–104 (2001).  https://doi.org/10.1002/jos.69MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Tansel, B.C., Kara, B.Y., Sabuncuoglu, I.: An efficient algorithm for the single machine total tardiness problem. IIE Trans. 33(8), 661–674 (2001).  https://doi.org/10.1080/07408170108936862CrossRefGoogle Scholar
  14. 14.
    Garraffa, M., Shang, L., Della Croce, F., T’Kindt, V.: An exact exponential branch-and-merge algorithm for the single machine total tardiness problem (2017). Preprint, HAL. https://hal.archives-ouvertes.fr/hal-01477835
  15. 15.
    Koulamas, C.: The single-machine total tardiness scheduling problem: review and extensions. Eur. J. Oper. Res. 202, 1–7 (2010).  https://doi.org/10.1016/j.ejor.2009.04.007MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Chang, S., Matsuo, H., Tang, G.: Worst-case analysis of local search heuristics for the one-machine total tardiness problem. Nav. Res. Logist. 37(1), 111–121 (1990). https://doi.org/10.1002/1520-6750(199002)37:1<111::AID-NAV3220370107>3.0.CO;2-VMathSciNetCrossRefGoogle Scholar
  17. 17.
    Fisher, M.L.: A dual algorithm for the one machine scheduling problem. Math. Progr. 11(1), 229–251 (1976).  https://doi.org/10.1007/BF01580393MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations