Method of Searching Birationally Equivalent Edwards Curves Over Binary Fields

  • Zhengbing Hu
  • Sergiy Gnatyuk
  • Maria Kovtun
  • Nurgul Seilova
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

This paper is devoted to increasing of performance of digital signature algorithms based on elliptic curves over binary fields. Group operations complexity on Edwards curves are less than on Weierstrass curves and have immunity to some side channel attacks. Hence, it is interesting to search birationally equivalent curves in Edwards form for curves in Weierstrass form presented in NIST recommended curves list. It allows using operations over points on Edwards curve in intermediate computations in scalar multiplications over curves in Weierstrass form. This approach improves the performance and security of digital signature.

Keywords

Cryptography Random binary elliptic curves Weierstrass curves Edwards curves Digital signature Cube root 

Notes

Acknowledgment

This scientific work was financially supported by self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (CCNU16A02015).

References

  1. 1.
    IEEE working group: IEEE 1363-2000: Standard Specifications For Public Key Cryptography. IEEE standard. IEEE, New York, NY 10017 (2000). http://grouper.ieee.org/groups/1363/P1363/
  2. 2.
    ISO/IEC. ISO/IEC 14888-3:2006, Information technology – Security techniques – Digital signatures with appendix – Part 3: Discrete logarithm based mechanisms (2006)Google Scholar
  3. 3.
    Bernstein D.J., Lange T.: Failures in NIST’s ECC standards (2016). https://cr.yp.to/newelliptic/nistecc-20160106.pdf
  4. 4.
    Kovtun, V., Tevyashev, A., Zbitnev, S.: Algorithms of scalar multiplication in group of elliptic curve points and some of their modifications. Radiotekhnika 141, 82–96 (2005). (in Russian)Google Scholar
  5. 5.
    Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar multiplication. In: Gary, L., Mullen, D. (eds.) Finite Fields and Applications, Contemporary Mathematics, vol. 461, pp. 1–19. American Mathematical Society (2008)Google Scholar
  6. 6.
    Moloney, R., O’Mahony, A., Laurent, P.: Efficient implementation of elliptic curve point operations using binary Edwards curves. IACR Cryptology ePrint Archive, Report 2010/208 (2010). http://eprint.iacr.org/2010/208.pdf
  7. 7.
    Kwang, H., Chol, O., Christophe, N.: Binary Edwards curves revisited. In: INDOCRYPT 2014. LNCS, vol. 8885, pp. 393–408 (2014)Google Scholar
  8. 8.
    Bernstein, D.J., Lange, T., Rezaeian Farashahi, R.: Binary Edwards curves. In: Oswald, E., Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (eds.) Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Ming, L., Ali, M., Daming, Z.: Fast algorithm for converting ordinary elliptic curves into binary Edward Form. Int. J. Dig. Content Technol. Appl. 6(1), 405–412 (2012)Google Scholar
  11. 11.
    Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (eds.) Progress in Cryptology – AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: Boztaş, S., Lu, H.F. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Kovtun, M., Gnatyuk, S., Trofimenko, V.: Accelerated r-th root extraction in binary field. In: 2nd International Scientific Conference: Information and Telecommunication Technologies: Education, Science and Practice, pp. 547–551. Almaty (2015). (in Russian)Google Scholar
  14. 14.
    Digital signature standard (DSS). Federal Information Processing Standard 186-4. National Institute of Standards and Technology (2015)Google Scholar
  15. 15.
    Barreto, P.S.L.M., Voloch, J.F.: Efficient computation of roots in finite fields. Des. Codes Crypt. 39, 275–280.  https://doi.org/10.1007/s10623-005-4017-5MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bluhm, M.: Software optimization of binary elliptic curves arithmetic using modern processor architectures, Ph.D. RUHR-Universitat Bochum (2013)Google Scholar
  17. 17.
    Hu, Z., Gnatyuk, S., Koval, O., Gnatyuk, V., Bondarovets, S.: Anomaly detection system in secure cloud computing environment. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(4), 10–21 (2017).  https://doi.org/10.5815/ijcnis.2017.04.02CrossRefGoogle Scholar
  18. 18.
    Gnatyuk, S., Okhrimenko, A., Kovtun, M., Gancarczyk, T., Karpinskyi, V.: Method of algorithm building for modular reducing by irreducible polynomial. In: 16th International Conference on Control, Automation and Systems. Gyeongju, Korea, pp. 1476–1479 (2016)Google Scholar
  19. 19.
    Explicit-Formulas Database. http://www.hyperelliptic.org/EFD

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Zhengbing Hu
    • 1
  • Sergiy Gnatyuk
    • 2
  • Maria Kovtun
    • 2
  • Nurgul Seilova
    • 3
  1. 1.Central China Normal UniversityWuhanChina
  2. 2.National Aviation UniversityKyivUkraine
  3. 3.Satbayev UniversityAlmatyRepublic of Kazakhstan

Personalised recommendations