Icing Thickness Prediction of Overhead Power Transmission Lines Using Parallel Coordinates and Convolutional Neural Networks

  • Baiming Xie
  • Chi Zhang
  • Qing-wu Gong
  • Koyamada Koji
  • Hua-rong Zeng
  • Li-jin Zhao
  • Hu Qiao
  • Liang Huang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

In this paper, a model used for predicting icing thickness of power transmission lines is proposed. An algorithm derived from parallel coordinates is applied to convert the high-dimensional source data, which includes relevant factors about the icing thickness of power transmission lines, to two dimensional images. Then the images are used for training convolutional neural networks (CNNs). Finally, the icing thickness is predicted by the trained CNNs. In this way, our system combines the advantages of information visualization and CNNs. It provides an universal method to process multi-dimensional numerical data with CNNs algorithmically and in a real sense.

Keywords

Icing thickness Parallel coordinates  Convolutional neural networks Visualization Deep learning 

References

  1. 1.
    Yi, H.: Analysis and countermeasures for large area accident cause by icing on transmission line. High Volt. Eng. 4, 005 (2005)Google Scholar
  2. 2.
    Li, Q.-F., Fan, Z., Wu, Q., Gao, J., Su, Z.-Y.: Zhou, W.J.: Investigation of ice-covered transmission lines and analysis on transmission line failures caused by ice-coating in China. Power Syst. Technol. 9, 009 (2008)Google Scholar
  3. 3.
    Yang, L., Hao, Y., Li, W., Li, Z., Dai, D., Li, L., Luo, B., Zhu, G.: Relationships among transmission line icing, conductor temperature and local meteorology using grey relational analysis. Gaodianya Jishu/High Volt. Eng. 36(3), 775–781 (2010)Google Scholar
  4. 4.
    Le Cun, Y., Jackel, L., Boser, B., Denker, J., Graf, H., Guyon, I., Henderson, D., Howard, R., Hubbard, W.: Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun. Mag. 27(11), 41–46 (1989)CrossRefGoogle Scholar
  5. 5.
    Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)CrossRefGoogle Scholar
  6. 6.
    Sainath, T.N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A.R., Dahl, G., Ramabhadran, B.: Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39–48 (2015)CrossRefGoogle Scholar
  7. 7.
    Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer-Verlag, New York (2009).  https://doi.org/10.1007/978-0-387-68628-8CrossRefMATHGoogle Scholar
  9. 9.
    Wegman, E.J.: Hyper dimensional data analysis using parallel coordinates. J. Am. Stat. Assoc. 85(411), 664–675 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, C., Uenaka, T., Sakamoto, N., Koyamada, K.: Extraction of vortices and exploration of the Ocean Data by Visualization System. In: Xiao, T., Zhang, L., Ma, S. (eds.) ICSC 2012. CCIS, pp. 114–123. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34396-4_14CrossRefGoogle Scholar
  11. 11.
    Wang, S., Yang, Y., Chang, J., Lin, F.: Using penalized regression with parallel coordinates for visualization of significance in high dimensional data. Int. J. Adv. Comput. Sci. Appl. 4(10) (2013)Google Scholar
  12. 12.
    Yuan, X., Guo, P., Xiao, H., Zhou, H., Qu, H.: Scattering points in parallel coordinates. IEEE Trans. Vis. Comput. Graph. 15(6), 1001–1008 (2009)CrossRefGoogle Scholar
  13. 13.
    Guo, P., Xiao, H., Wang, Z., Yuan, X.: Interactive local clustering operations for high dimensional data in parallel coordinates. In: Visualization Symposium, pp. 97–104 (2010)Google Scholar
  14. 14.
    Zhang, C., Uenaka, T., Sakamoto, N., Koyamada, K.: Extraction Of vortices and exploration of the ocean data by visualization system. In: Xiao, T., Zhang, L., Ma, S. (eds.) ICSC 2012. CCIS, pp. 114–123. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34396-4_14CrossRefGoogle Scholar
  15. 15.
    Blaas, J., Botha, C.P., Post, F.H.: Extensions of parallel coordinates for interactive exploration of large multi-time point data sets. IEEE Trans. Vis. Comput. Graph. 14(6), 1436–1451 (2008)CrossRefGoogle Scholar
  16. 16.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  17. 17.
    Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)CrossRefGoogle Scholar
  19. 19.
    Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  20. 20.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image net classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  21. 21.
    Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing coadaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012)Google Scholar
  22. 22.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATHGoogle Scholar
  23. 23.
    Li, P., Li, N., Li, Q.M., Cao, M., Chen, H.X.: Prediction model for power transmission line icing load based on data-driven. Adv. Mater. Res. 143–144, 1295–1299 (2010)CrossRefGoogle Scholar
  24. 24.
    Huang, X.B., Jia-Jie, L.I., Ouyang, L.S., Li-Cheng, L.I., Bing, L.: Icing thickness prediction model using fuzzy logic theory. Gaodianya Jishu/High Volt. Eng. 37(5), 1245–1252 (2011)Google Scholar
  25. 25.
    Zeng, X.J., Luo, X.L., Lu, J.Z., Xiong, T.T., Pan, H.: A novel thickness detection method of ice covering on overhead transmission line. Energy Procedia 14, 1349–1354 (2012)CrossRefGoogle Scholar
  26. 26.
    Ma, T., Niu, D., Fu, M.: Icing forecasting for power transmission lines based on a wavelet support vector machine optimized by a quantum fireworks algorithm. Appl. Sci. 6(2), 54 (2016)CrossRefGoogle Scholar
  27. 27.
    Nielsen, M.A.: Neural networks and deep learning. Determination Press (2015)Google Scholar
  28. 28.
    Rather, N.N., Patel, C.O., Khan, S.A.: Using deep learning towards biomedical knowledge discovery. Int. J. Math. Sci. Comput. (IJMSC) 3(2), 1–10 (2017).  https://doi.org/10.5815/ijmsc.2017.02.01CrossRefGoogle Scholar
  29. 29.
    Sharma, D., Kumar, B., Chand, S.A.: A survey on journey of topic modeling techniques from SVD to deep learning. Int. J. Mod. Educ. Comput. Sci. (IJMECS), 9(7), 50–62 (2017).  https://doi.org/10.5815/ijmecs.2017.07.06CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Baiming Xie
    • 1
  • Chi Zhang
    • 2
  • Qing-wu Gong
    • 3
  • Koyamada Koji
    • 4
  • Hua-rong Zeng
    • 1
  • Li-jin Zhao
    • 1
  • Hu Qiao
    • 3
  • Liang Huang
    • 1
  1. 1.Guizhou Electric Power Research InstituteGuizhou Power Grid Limited Liability CompanyGuiyangChina
  2. 2.Graduate School of EngineeringKyoto UniversityKyotoJapan
  3. 3.School of Electrical EngineeringWuhan UniversityWuhanChina
  4. 4.Academic Center for Computing and Media StudiesKyoto UniversityKyotoJapan

Personalised recommendations