Skip to main content

Icing Thickness Prediction of Overhead Power Transmission Lines Using Parallel Coordinates and Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 754))

Abstract

In this paper, a model used for predicting icing thickness of power transmission lines is proposed. An algorithm derived from parallel coordinates is applied to convert the high-dimensional source data, which includes relevant factors about the icing thickness of power transmission lines, to two dimensional images. Then the images are used for training convolutional neural networks (CNNs). Finally, the icing thickness is predicted by the trained CNNs. In this way, our system combines the advantages of information visualization and CNNs. It provides an universal method to process multi-dimensional numerical data with CNNs algorithmically and in a real sense.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yi, H.: Analysis and countermeasures for large area accident cause by icing on transmission line. High Volt. Eng. 4, 005 (2005)

    Google Scholar 

  2. Li, Q.-F., Fan, Z., Wu, Q., Gao, J., Su, Z.-Y.: Zhou, W.J.: Investigation of ice-covered transmission lines and analysis on transmission line failures caused by ice-coating in China. Power Syst. Technol. 9, 009 (2008)

    Google Scholar 

  3. Yang, L., Hao, Y., Li, W., Li, Z., Dai, D., Li, L., Luo, B., Zhu, G.: Relationships among transmission line icing, conductor temperature and local meteorology using grey relational analysis. Gaodianya Jishu/High Volt. Eng. 36(3), 775–781 (2010)

    Google Scholar 

  4. Le Cun, Y., Jackel, L., Boser, B., Denker, J., Graf, H., Guyon, I., Henderson, D., Howard, R., Hubbard, W.: Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun. Mag. 27(11), 41–46 (1989)

    Article  Google Scholar 

  5. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  6. Sainath, T.N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A.R., Dahl, G., Ramabhadran, B.: Deep convolutional neural networks for large-scale speech tasks. Neural Netw. 64, 39–48 (2015)

    Article  Google Scholar 

  7. Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985)

    Article  MathSciNet  Google Scholar 

  8. Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer-Verlag, New York (2009). https://doi.org/10.1007/978-0-387-68628-8

    Book  MATH  Google Scholar 

  9. Wegman, E.J.: Hyper dimensional data analysis using parallel coordinates. J. Am. Stat. Assoc. 85(411), 664–675 (2012)

    Article  Google Scholar 

  10. Zhang, C., Uenaka, T., Sakamoto, N., Koyamada, K.: Extraction of vortices and exploration of the Ocean Data by Visualization System. In: Xiao, T., Zhang, L., Ma, S. (eds.) ICSC 2012. CCIS, pp. 114–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34396-4_14

    Chapter  Google Scholar 

  11. Wang, S., Yang, Y., Chang, J., Lin, F.: Using penalized regression with parallel coordinates for visualization of significance in high dimensional data. Int. J. Adv. Comput. Sci. Appl. 4(10) (2013)

    Google Scholar 

  12. Yuan, X., Guo, P., Xiao, H., Zhou, H., Qu, H.: Scattering points in parallel coordinates. IEEE Trans. Vis. Comput. Graph. 15(6), 1001–1008 (2009)

    Article  Google Scholar 

  13. Guo, P., Xiao, H., Wang, Z., Yuan, X.: Interactive local clustering operations for high dimensional data in parallel coordinates. In: Visualization Symposium, pp. 97–104 (2010)

    Google Scholar 

  14. Zhang, C., Uenaka, T., Sakamoto, N., Koyamada, K.: Extraction Of vortices and exploration of the ocean data by visualization system. In: Xiao, T., Zhang, L., Ma, S. (eds.) ICSC 2012. CCIS, pp. 114–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34396-4_14

    Chapter  Google Scholar 

  15. Blaas, J., Botha, C.P., Post, F.H.: Extensions of parallel coordinates for interactive exploration of large multi-time point data sets. IEEE Trans. Vis. Comput. Graph. 14(6), 1436–1451 (2008)

    Article  Google Scholar 

  16. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MathSciNet  Google Scholar 

  18. Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  19. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image net classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  21. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing coadaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012)

    Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Li, P., Li, N., Li, Q.M., Cao, M., Chen, H.X.: Prediction model for power transmission line icing load based on data-driven. Adv. Mater. Res. 143–144, 1295–1299 (2010)

    Article  Google Scholar 

  24. Huang, X.B., Jia-Jie, L.I., Ouyang, L.S., Li-Cheng, L.I., Bing, L.: Icing thickness prediction model using fuzzy logic theory. Gaodianya Jishu/High Volt. Eng. 37(5), 1245–1252 (2011)

    Google Scholar 

  25. Zeng, X.J., Luo, X.L., Lu, J.Z., Xiong, T.T., Pan, H.: A novel thickness detection method of ice covering on overhead transmission line. Energy Procedia 14, 1349–1354 (2012)

    Article  Google Scholar 

  26. Ma, T., Niu, D., Fu, M.: Icing forecasting for power transmission lines based on a wavelet support vector machine optimized by a quantum fireworks algorithm. Appl. Sci. 6(2), 54 (2016)

    Article  Google Scholar 

  27. Nielsen, M.A.: Neural networks and deep learning. Determination Press (2015)

    Google Scholar 

  28. Rather, N.N., Patel, C.O., Khan, S.A.: Using deep learning towards biomedical knowledge discovery. Int. J. Math. Sci. Comput. (IJMSC) 3(2), 1–10 (2017). https://doi.org/10.5815/ijmsc.2017.02.01

    Article  Google Scholar 

  29. Sharma, D., Kumar, B., Chand, S.A.: A survey on journey of topic modeling techniques from SVD to deep learning. Int. J. Mod. Educ. Comput. Sci. (IJMECS), 9(7), 50–62 (2017). https://doi.org/10.5815/ijmecs.2017.07.06

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiming Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, B. et al. (2019). Icing Thickness Prediction of Overhead Power Transmission Lines Using Parallel Coordinates and Convolutional Neural Networks. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education. ICCSEEA 2018. Advances in Intelligent Systems and Computing, vol 754. Springer, Cham. https://doi.org/10.1007/978-3-319-91008-6_26

Download citation

Publish with us

Policies and ethics