Advertisement

Planning Automation in Discrete Systems with a Given Structure of Technological Processes

  • Alexander Anatolievich Pavlov
  • Elena Andreevna Khalus
  • Iryna Vitalievna Borysenko
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

In this paper, we consider mathematical models and algorithms for efficient planning process automation in discrete systems of a wide class (innovative software development, small-scale production). An effective solution of the proposed models is based on earlier results of M.Z. Zgurovsky, A.A. Pavlov, E.B. Misura, and E.A. Khalus in the field of intractable single stage single machine scheduling problems.

Keywords

Planning Process automation Scheduling Combinatorial optimization Just in time Portfolio of orders Profit maximization 

References

  1. 1.
    Alhumrani, S.A., Qureshi, R.J.: Novel approach to solve resource constrained project scheduling problem (RCPSP). Int. J. Mod. Educ. Comput. Sci. (IJMECS) 8(9), 60–68 (2016).  https://doi.org/10.5815/ijmecs.2016.09.08CrossRefGoogle Scholar
  2. 2.
    Vollmann, T.E., Berry, W.L., Whybark, D.C.: Manufacturing Planning and Control Systems. McGraw-Hill, Boston (2005)Google Scholar
  3. 3.
    Popinako, D.: ERP-rynok glazami veterana. SK-Press, Kiev (2011). PC Week-Ukr. (in Russian)Google Scholar
  4. 4.
    Zagidullin, R.R.: Upravlenie mashinostroitelnym proizvodstvom s pomoschyu sistem MES, APS, ERP. TNT, Staryi Oskol (2011). (in Russian)Google Scholar
  5. 5.
    Zagidullin, R.R.: Planirovanie mashinostroitelnogo proizvodstva. TNT, Staryi Oskol (2017). (in Russian)Google Scholar
  6. 6.
    Swayamsiddha, S., Parija, S., Sahu, P.K., Singh, S.S.: Optimal reporting cell planning with binary differential evolution algorithm for location management problem. Int. J. Intell. Syst. Appl. (IJISA) 9(4), 23–31 (2017).  https://doi.org/10.5815/ijisa.2017.04.03CrossRefGoogle Scholar
  7. 7.
    Soudi, S.: Distribution system planning with distributed generations considering benefits and costs. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 5(9), 45–52 (2013).  https://doi.org/10.5815/ijmecs.2013.09.07CrossRefGoogle Scholar
  8. 8.
    Garg, R., Singh, A.K.: Enhancing the discrete particle swarm optimization based workflow grid scheduling using hierarchical structure. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5(6), 18–26 (2013).  https://doi.org/10.5815/ijcnis.2013.06.03CrossRefGoogle Scholar
  9. 9.
    Pavlov, A.A., Misura, E.B., Khalus, E.A.: Properties’ research of the scheduling problem for a single machine by minimizing the total earliness of tasks with the condition of the schedule feasibility. Visnyk NTUU “KPI” Inf. Oper. Comput. Sci. 56, 98–102 (2012). (in Russian)Google Scholar
  10. 10.
    Koulamas, C.: The single-machine total tardiness scheduling problem: review and extensions. Eur. J. Oper. Res. 202, 1–7 (2010).  https://doi.org/10.1016/j.ejor.2009.04.007MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Soltani, N., Soleimani, B., Barekatain, B.: Heuristic algorithms for task scheduling in cloud computing: a survey. Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 9(8), 16–22 (2017).  https://doi.org/10.5815/ijcnis.2017.08.03CrossRefGoogle Scholar
  12. 12.
    Zgurovsky, M.Z., Pavlov, A.A.: Prinyatie resheniy v setevyh sistemah s ogranichennymi resursami: Monograph. Naukova dumka, Kiev (2010). (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations