Advertisement

Building a Generalized Peres Gate with Multiple Control Signals

  • O. I. Rozhdov
  • I. M. Yuriychuk
  • V. G. Deibuk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 754)

Abstract

We consider a physical realization of the generalized quantum Peres and Toffoli gates with n-control signals, implemented in a one-dimensional chain of nuclear spins (one half) in a strong magnetic field coupled by an Ising interaction. Quantum algorithms in such system can be performed by transverse electromagnetic radio-frequency field using a number of resonant π-pulses on the initial states. The maximum number of π-pulses needed for the implementation of the Peres gate with n-control signals is discussed. It is found, that required number of π-pulses linearly scales with the number n of the control signals of the generalized quantum Peres gate. Comparison of our studies with the known values of the quantum cost of the generalized Peres gate allows us to suggest that proposed physical implementation of the gate is more efficient. The fidelity parameter is used to study the performance of the generalized Peres gate as a function of the relative error of the resonance frequency. The limits of an imbalance of the generator settings remaining the gate well defined are determined.

Keywords

Generalized Peres gate Generalized Toffoli gate Ising model Quantum cost Fidelity 

References

  1. 1.
    Frank, M.P.: Foundations of generalized reversible computing. In: Reversible Computation, RC 2017. LNCS, vol. 10301, pp. 19–34. Springer, Cham (2017)CrossRefGoogle Scholar
  2. 2.
    Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an emerging technology. In: Progress in VLSI Design and Test, pp. 383–392. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Landauer, R.: Irreversibility and heat generation in the computational process. IBM J. Res. Develop. 5(1/2), 183–191 (1961)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Develop. 17(6), 525–532 (1973)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  6. 6.
    Blatt, R.: Quantum information processing with trapped ions. In: Quantum Information and Measurement, p. Th1.1 (2013)Google Scholar
  7. 7.
    Deibuk, V.G., Biloshytskyi, A.V.: Design of a ternary reversible/quantum adder using genetic algorithm. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 7(9), 38–45 (2015).  https://doi.org/10.5815/ijitcs.2015.09.06CrossRefGoogle Scholar
  8. 8.
    Berman, G.P., Doolen, G.D., Holm, D.D., Tsifrinovich, V.I.: Quantum computer on a class of one-dimensional Ising systems. Phys. Lett. A 193(5–6), 444–450 (1994)CrossRefGoogle Scholar
  9. 9.
    Kane, B.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)CrossRefGoogle Scholar
  10. 10.
    Lopez, G.V., Lara, L.: Numerical simulation of controlled-controlled-not (CCN) quantum gate in a chain of three interacting nuclear spins system. J. Phys. B Atom. Opt. Mol. Phys. 39(9), 3897–3904 (2006)CrossRefGoogle Scholar
  11. 11.
    Bilal, B., Ahmed, S., Kakkar, V.: Optimal realization of universality of Peres gate using explicit interaction of cells in quantum dot cellular automata nanotechnology. Int. J. Intell. Syst. Appl. (IJISA) 9(6), 75–84 (2017).  https://doi.org/10.5815/ijisa.2017.06.08CrossRefGoogle Scholar
  12. 12.
    Szyprowski, M., Kerntopf, P.: Low quantum cost realization of generalized Peres and Toffoli gates with multiple-control signals. In: Proceedings of the 13th IEEE International Conference on Nanotechnology, Beijing, China, pp. 802–807 (2013)Google Scholar
  13. 13.
    Moraga, C.: Multiple mixed control signals for reversible Peres gates. Electron. Lett. 50(14), 987–989 (2014)CrossRefGoogle Scholar
  14. 14.
    Berman, G.P., Doolen, G.D., Tsifrinovich, V.I.: Solid-state quantum computation – a new direction for nanotechnology. Superlattices Microstruct. 27(2/3), 89–104 (2000)CrossRefGoogle Scholar
  15. 15.
    Gorin, T., Lara, L., López, G.V.: Simulation of static and random errors on Grover’s search algorithm implemented in an Ising nuclear spin chain quantum computer with a few qubits. J. Phys. B: Atom. Mol. Opt. Phys. 43(8), 085508 (2010). (9 pages)CrossRefGoogle Scholar
  16. 16.
    Mendonça, P.E.M., Napolitano, R.D.J., Marchiolli, M.A., Foster, C.J., Liang, Y.-C.: Alternative fidelity measure between quantum states. Phys. Rev. A 78(5), 052330 (2008)Google Scholar
  17. 17.
    Moghimi, S., Reshadinezhad, M.R.: A novel 4 × 4 universal reversible gate as a cost efficient full adder/subtractor in terms of reversible and quantum metrics. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 7(11), 28–34 (2015).  https://doi.org/10.5815/ijmecs.2015.11.04CrossRefGoogle Scholar
  18. 18.
    Thakral, S., Bansal, D.: Novel reversible DS gate for reversible logic synthesis. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 8(6), 20–26 (2016).  https://doi.org/10.5815/ijmecs.2016.06.03CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • O. I. Rozhdov
    • 1
  • I. M. Yuriychuk
    • 1
  • V. G. Deibuk
    • 1
  1. 1.Yuriy Fedkovych Chernivtsi National UniversityChernivtsiUkraine

Personalised recommendations