Skip to main content

Finite Element Method for Schnakenberg Model

  • Chapter
  • First Online:
Mathematical Methods in Engineering

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 24))

Abstract

In the study, solution of an initial boundary value problem for the Schnakenberg reaction-diffusion model is considered in numerical meaning. The approximate solution is assumed to be a finite series, some of exponential form of the cubic B-spline basis. After adapting the boundary data, the system is integrated in time variable by using Crank-Nicolson implicit method. The resultant iteration algorithm is initiated by the aid of the initial data adaption. The numerical results are compared with the analytical solution by using the relative error calculation that measures the ratio of the difference in the two successive time levels to the previous time level to validate the accuracy and the reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, C., Wei, J.: Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction diffusion model. Nonlinear Anal. Real World Appl. 13, 1961–1977 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ruuth, S.J.: Implicit-explicit methods for reaction-diffusion problems in pattern formation. J. Math. Biol. 34, 148–176 (1995)

    Article  MathSciNet  Google Scholar 

  3. Madzvamuse, A.: Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J. Comput. Phys. 214, 239–263 (2006)

    Article  MathSciNet  Google Scholar 

  4. Mana, S.: Some numerical methods for Schnackenberg model. Int. J. Eng. Invent. 2(2), 71–78 (2013)

    Google Scholar 

  5. McCartin, B.J.: Theory of exponential splines. J. Approx. Theor. 66, 1–23 (1991)

    Article  MathSciNet  Google Scholar 

  6. Sakai, M., Usmani, R.A.: A class of simple exponential cubic B-splines and their application to numerical solution to singular perturbation problems. Numer. Math. 55, 493–500 (1989)

    Article  MathSciNet  Google Scholar 

  7. Radunovic, D.: Multiresolution exponential B-splines and singularly perturbed boundary problem. Numer. Algor. 47, 191–210 (2008)

    Article  MathSciNet  Google Scholar 

  8. Mohammadi, R.: Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation. Chin. Phys. B 24(5), 050206 (2015)

    Article  Google Scholar 

  9. Rao, S.C.S., Kumar, M.: Exponential B-spline collocation method for self-adjoint singularly perturbed boundary value problems. Appl. Numer. Math. 58, 1572–1581 (2008)

    Article  MathSciNet  Google Scholar 

  10. Ersoy, O., Dag. I.: Numerical solutions of the reaction diffusion system by using exponential cubic B-spline collocation algorithms. Open Phys. 13(1), 414–427 (2015)

    Google Scholar 

  11. Korkmaz, A., Ersoy, O., Dag. I.: Motion of patterns modeled by the gray-scott autocatalysis system in one dimension. Match Commun. Math. Comput. Chem. 77, 507–526 (2017)

    Google Scholar 

  12. Ersoy, O., Korkmaz, A., Dag., I.: Exponential B splines for numerical solutions to some Boussinesq systems for water waves. Mediterr. J. Math. 13, 4975–49974 (2016)

    Google Scholar 

  13. Ersoy, O., Dag, I.: The exponential cubic B-spline collocation method for the Kuramoto-Sivashinsky equation. Filomat 30(3), 853–861 (2016)

    Article  MathSciNet  Google Scholar 

  14. Dag, I., Ersoy, O.: The exponential cubic B-spline algorithm for Fisher equation. Chaos Solitons Fractals 86, 101–106 (2016)

    Article  MathSciNet  Google Scholar 

  15. Rubin, S.G., Graves, R.A.: Cubic Spline Approximation for Problems in Fluid Mechanics. NASA TR R-436, Washington (1975)

    Google Scholar 

  16. Sahin, A.: Numerical solutions of the reaction-diffusion systems with B-spline finite element method. Ph.D. Dissertation, Department of Mathematics, Eskisehir Osmangazi University, Turkey (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Ersoy Hepson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hepson, O.E., Dag, I. (2019). Finite Element Method for Schnakenberg Model. In: Taş, K., Baleanu, D., Machado, J. (eds) Mathematical Methods in Engineering. Nonlinear Systems and Complexity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-90972-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90972-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90971-4

  • Online ISBN: 978-3-319-90972-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics