Skip to main content

A Transient Flow of a Non-Newtonian Fluid Modelled by a Mixed Time-Space Derivative: An Improved Integral-Balance Approach

  • Chapter
  • First Online:
Book cover Mathematical Methods in Engineering

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 24))

Abstract

Transient flow of second-grade fluid, modelled by mixed time-space derivative, due to sudden change of the boundary condition (Stokes first problem) has been solved by an improved integral-balance method utilizing double integration technique. Two versions of mixed time-space derivative, integer-order and fractional in time (Riemann-Liouville), have been considered. The solution uses the concept of finite penetration depth of diffusing momentum from the interface into the fluid bulk. The solutions provide straightforwardly the functional relationship of the penetration depth controlled by two similarity variables: related to the Newtonian flow behaviour and the Deborah number relevant to the elastic fluid performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandelli, R., Rajagopal, K.R.: Start-up flows of second grade fluids in domains with one finite dimension. Int. J. Non Linear Mech. 30, 817–839 (1995)

    Article  MathSciNet  Google Scholar 

  2. Derkach, S.R.: Rheology on the way from dilute to concentrated emulsions. Int. Rev. Chem. Eng. 2, 465–472 (2009)

    Google Scholar 

  3. Erdogan, M.E.: Plane surface suddenly set in motion in a non-Newtonian fluid. Acta Mech. 108, 179–187 (1995)

    Article  Google Scholar 

  4. Erdogan, M.E., Imrak, C.E.: On the comparison of two different solutions in the form of series of the governing equation of an unsteady flow of a second grade fluid. Int. J. Non Linear Mech. 40, 545–550 (2005)

    Article  Google Scholar 

  5. Erdogan, M.E., Imrak, C.E.: On unsteady unidirectional flows of a second grade fluid. Int. J. Non Linear Mech. 40, 1238–1251 (2005)

    Article  Google Scholar 

  6. Erdogan, M.E., Imrak, C.E.: On some unsteady flows of a non-Newtonian fluid. Appl. Math. Model. 31, 170–180 (2007)

    Article  Google Scholar 

  7. Erdogan, M.E., Imrak, C.E.: On the comparison of the methods used for the solutions of the governing equation for unsteady unidirectional flows of second grade fluids. Int. J. Eng. Sci. 45, 786–796 (2007)

    Article  MathSciNet  Google Scholar 

  8. Fetecau, C., Zierip, J.: On a class of exact solutions of the equations of motions of a second grade fluid. Acta Mech. 150, 135–138 (2001)

    Article  Google Scholar 

  9. Fetecau, C., Fetecau, C., Zierep, J.: Decay of a potential vortex and propagation of a heat wave in a second grade fluid. Int. J. Non linear Mech. 37 1051–1056 (2002)

    Article  Google Scholar 

  10. Frater, K.R.: On the solution of some boundary value problems arising in elastico-viscous fluid mechanics. ZAMP 21, 134–137 (1970)

    Article  Google Scholar 

  11. Goodman, T.R.: Application of integral methods to transient nonlinear heat transfer. In: Irvine, T.F., Hartnett, J.P. (eds.) Advances in Heat Transfer, vol. 1, p. 51. Academic Press, San Diego (1964)

    Google Scholar 

  12. Goodwin, J.W., Hughes, R.W.: Rheology for Chemists: An Introduction, 2nd edn. RSC Publishing, Cambridge (2008)

    Google Scholar 

  13. Hayat, T., Asghar, S.: On the moment of a plane disk in a non-Newtonian fluid. Acta Mech. 136, 125–131 (1999)

    Article  MathSciNet  Google Scholar 

  14. Hayat, T., Asghar, S., Siddiqui, A.M.: Some unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Eng. Sci. 38, 337–346 (2000)

    Article  Google Scholar 

  15. Hristov, J.: The heat-balance integral method by a parabolic profile with unspecified exponent: analysis and benchmark exercises. Therm. Sci. 13, 22–48 (2009)

    Google Scholar 

  16. Hristov, J.: Transient flow of a generalized second grade fluid due to a constant surface shear stress: an approximate integral-balance solution. Int. Rev. Chem. Eng. 3, 802–809 (2011)

    Google Scholar 

  17. Hristov, J.: Integral-balance solution to the stokes first problem of a viscoelastic generalized second grade fluid. Therm. Sci. 16, 395–410 (2012)

    Article  Google Scholar 

  18. Hristov, J.: Approximate solutions to time-fractional models by integral balance approach. In: Cattani, C., Srivastava, H.M., Yang, X.-J. (eds.) Fractional Dynamics, p. 78. De 482 Gruyter Open, Berlin (2015)

    Google Scholar 

  19. Hristov, J.: Diffusion models with weakly singular kernels in the fading memories: how the integral-balance method can be applied? Therm. Sci. 19, 947–957 (2015)

    Article  Google Scholar 

  20. Hristov, J.: Double integral-balance method to the fractional subdiffusion equation: approximate solutions, optimization problems to be resolved and numerical simulations. J. Vib. Control (2016, in press). https://doi.org/10.1177/1077546315622773

  21. Hristov, J.: Integral-balance solution to nonlinear subdiffusion equation. In: Bhalekar, S. (ed.) Frontiers in Fractional Calculus, 2017, p. 71. Bentham Science Publishers, Sharjah (2018)

    Google Scholar 

  22. Hsiao, K.L.: Manufacturing extrusion process for forced convection micropolar fluids flow with magnetic effect over a stretching sheet. Int. Rev. Chem. Eng. 1, 272–276 (2009)

    Google Scholar 

  23. Hsiao, K.L.: Manufacturing extrusion process for Magnetic mixed convection of an incompressible viscoelastic fluid over a stretching sheet. Int. Rev. Chem. Eng. 1, 164–169 (2009)

    Google Scholar 

  24. Jordan, P.M.: A note on start-up, plane Couette flow involving second-grade fluids. Math. Probl. Eng. https://doi.org/10.1155/MPE.2005.539

  25. Kang, J., Xu, M.: Exact solutions for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. Acta Mech. Sin. 25, 181–186 (2009)

    Article  MathSciNet  Google Scholar 

  26. Karimi, S., Dabir, B., Dadvar, M.: Non-Newtonian effect of blood in physiologically realistic pulsatile flow. Int. Rev. Chem. Eng. 2, 805–810 (2009)

    Google Scholar 

  27. Khan, M., Nadeem, S., Hayat, T.: Unsteady motions of generalized second-grade fluid. Math. Comput. Model. 41, 629–637 (2005)

    Article  MathSciNet  Google Scholar 

  28. Labsi, N., Benkaha, Y.K., Boutra, A., Brunier, E.: Simultaneous hydrodynamic and thermal flow development of a thermodependent viscoplastic fluid. Int. Rev. Chem. Eng. 2, 31–39 (2010)

    Google Scholar 

  29. Mitchell, S.L., Myers, T.G.: Application of standard and refined heat balance integral methods to one-dimensional Stefan problems. SIAM Rev. 52, 57–86 (2010)

    Article  MathSciNet  Google Scholar 

  30. Momoniat, E.: A point source solution for unidirectional flow of a viscoelastic fluid. Phys. Lett. A 372(22), 4041–4044 (2008)

    Article  Google Scholar 

  31. Myers, T.G.: Optimal exponent heat balance and refined integral methods applied to Stefan problem. Int. J. Heat Mass Transf. 53, 1119–1127 (2010)

    Article  Google Scholar 

  32. Naraim, A.A., Joseph, D.D.: Remarks about the interpretations of impulsive experiments in shear flows of viscoplastic liquids. Rheol. Acta 22, 528–538 (1983)

    Article  Google Scholar 

  33. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  34. Ozisik, M.N.: Heat Conduction, 2nd edn. Wiley, New York (1993)

    Google Scholar 

  35. Pirkle, J.C. Jr., Braatz, R.D.: Instabilities and multiplicities in non-isothermal blown film extrusion including the effects of crystallization. J. Proc. Cont. 21, 405–414 (2011)

    Article  Google Scholar 

  36. Puri, P.: Impulsive motion of flat plate in a Rivlin-Eriksen fluid. Rheol. Acta 23, 451–453 (1984)

    Article  Google Scholar 

  37. Qi, H., Xu, M.: Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative. Appl. Math. Model. 33, 4184–4191 (2009)

    Article  MathSciNet  Google Scholar 

  38. Rajagopal, K.R.: A note on unsteady unidirectional flows of a non-Newtonian fluid. Int. J. Non-linear Mech. 17, 369–373 (1982)

    Article  MathSciNet  Google Scholar 

  39. Rajagopal, K.R.: On boundary conditions for fluids of the differential type. In: Sequeira, A. (ed.) Navier-Stokes Equation and Related Non-linear Problems, p. 273. Plenum Press, New York (1995)

    Google Scholar 

  40. Rajagopal, K.R., Gupta, A.S.: On class of exact solutions to the equation of motion of second grade fluid. Int. J. Eng. Sci. 19, 1009–1014 (1981)

    Article  MathSciNet  Google Scholar 

  41. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  42. Schmitt, C., Henni, A.H., Cloutier, G.: Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior. J. Biomech. 44, 622–629 (2011)

    Article  Google Scholar 

  43. Siginer, D.A., Letelier, M.F.: Laminar flow of non-linear viscoelastic fluids in straight tubes of arbitrary contour. Int. J. Heat Mass Trans. 54, 2188–2202 (2011)

    Article  Google Scholar 

  44. Tan, W., Xu, M.: The impulsive motion of a flat plate in a generalized second grade fluid. Mech. Res. Commun. 29, 3–9 (2002)

    Article  MathSciNet  Google Scholar 

  45. Tan, W., Xu, M.: Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin. 18, 342–349 (2002)

    Article  MathSciNet  Google Scholar 

  46. Tan, W., Xu, M.: Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta Mech. Sin. 20, 471–476 (2004)

    Article  MathSciNet  Google Scholar 

  47. Tan, W., Xian, F., Wei, L.: An exact solution of unsteady Couette flow of generalized second grade fluid. Chin. Sci. Bull. 47, 1783–1785 (2002)

    Article  MathSciNet  Google Scholar 

  48. Teipel, I.: The impulsive motion of a flat plate in a viscoelastic fluid. Acta Mech. 29, 277–279 (1981)

    Article  Google Scholar 

  49. Thurston, G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972)

    Article  Google Scholar 

  50. Ting, T.W.: Certain non-steady flows of second order fluids. Arch. Rat. Mech. Anal. 14, 1–26 (1963)

    Article  MathSciNet  Google Scholar 

  51. Van Gorder, R.A., Vajravelu, K.: Third-order partial differential equations arising in the impulsive motion of a flat plate. Commun. Nonlinear. Sci. Numer. Simulat. 14, 2629–2636 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Hristov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hristov, J. (2019). A Transient Flow of a Non-Newtonian Fluid Modelled by a Mixed Time-Space Derivative: An Improved Integral-Balance Approach. In: Taş, K., Baleanu, D., Machado, J. (eds) Mathematical Methods in Engineering. Nonlinear Systems and Complexity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-90972-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90972-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90971-4

  • Online ISBN: 978-3-319-90972-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics