Microlensing Maps of the Galaxy

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

For longer than a decade, several microlensing surveys have monitored a large number of stars and detected thousands of microlensing events over the Galactic bulge (Hamadache et al. in A & A 454:185, 2006; Popowski et al. in ApJ 631:879, 2005; Sumi et al. in ApJ 591:204, 2003; Sumi et al. in ApJ 636:240, 2006; Sumi et al. in ApJ 778:150, 2013; Wyrzykowski et al. in ApJS 216:12, 2015; Mróz et al. in Nature 548:183, 2017). The microlensing optical depth, average time scale and microlensing rate are key parameters which provide basic information of microlensing events. The theoretical prediction maps of these parameters are very useful for survey area selection for both on-going and future microlensing surveys.

References

  1. Afonso C, Albert JN, Alard C et al (2003) A & A 404:145ADSCrossRefGoogle Scholar
  2. Alard C (2000) A & AS 144:363ADSGoogle Scholar
  3. Alcock C, Allsman RA, Alves D et al (1997) ApJ 479:119ADSCrossRefGoogle Scholar
  4. Alcock C, Allsman RA, Alves DR et al (2000) ApJ 541:734ADSCrossRefGoogle Scholar
  5. Awiphan S, Kerins E, Robin AC (2016b) MNRAS 456:1666ADSCrossRefGoogle Scholar
  6. Bond IA, Rattenbury NJ, Skuljan J et al (2002) MNRAS 333:71ADSCrossRefGoogle Scholar
  7. Bond IA, Udalski A, Jaroszyński M et al (2004) ApJ 606:L155ADSCrossRefGoogle Scholar
  8. Bramich DM (2008) MNRAS 386:L77ADSCrossRefGoogle Scholar
  9. Calamida A, Sahu KC, Casertano S et al (2015) ApJ 810:8ADSCrossRefGoogle Scholar
  10. Cutri RM, Skrutskie MF, van Dyk S et al. (2003) 2MASS All sky catalog of point sourcesGoogle Scholar
  11. Einasto J (1979) In: Burton WB (ed) The large-scale characteristics of the galaxy, vol 84 of IAU Symposium, pp. 451–458CrossRefGoogle Scholar
  12. Einstein A (1915) Sitzungsber. preuss. Akad. Wiss. 47(2): 831–839Google Scholar
  13. Einstein A (1936) Science 84:506ADSCrossRefGoogle Scholar
  14. Fux R (1999) A & A 345:787ADSGoogle Scholar
  15. Gaudi BS (2012) ARA & A 50:411ADSCrossRefGoogle Scholar
  16. Gomez AE, Grenier S, Udry S et al. (1997). In: Bonnet RM, Høg E, Bernacca PL, Emiliani L, Blaauw A, Turon C, Kovalevsky J, Lindegren L, Hassan H, Bouffard M, Strim B, Heger D, Perryman MAC, Woltjer L (eds) Hipparcos - Venice ’97, vol 402 of ESA Special Publication, pp. 621–624Google Scholar
  17. Hamadache C, Le Guillou L, Tisserand P et al (2006) A & A 454:185ADSCrossRefGoogle Scholar
  18. Han C, Gould A (2003) ApJ 592:172ADSCrossRefGoogle Scholar
  19. Haywood M, Robin AC, Creze M (1997a) A & A 320:428ADSGoogle Scholar
  20. Haywood M, Robin AC, Creze M (1997b) A & A 320:440ADSGoogle Scholar
  21. Henderson CB, Gaudi BS, Han C et al (2014) ApJ 794:52ADSCrossRefGoogle Scholar
  22. Hwang K-H, Han C, Choi J-Y et al. (2015). arXiv:1507.05361
  23. Jahreiß H, Wielen R (1997). In: Bonnet RM, Høg E, Bernacca PL, Emiliani L, Blaauw A, Turon C, Kovalevsky J, Lindegren L, Hassan H, Bouffard M, Strim B, Heger D, Perryman MAC, Woltjer L (eds) Hipparcos - Venice ’97, vol. 402 of ESA special publication, pp. 675–680Google Scholar
  24. Kennedy GM, Kenyon SJ (2008) ApJ 682:1264ADSCrossRefGoogle Scholar
  25. Kerins E, Robin AC, Marshall DJ (2009) MNRAS 396:1202ADSCrossRefGoogle Scholar
  26. Laureijs R, Amiaux J, Arduini S et al. (2011), Euclid Definition Study Report, ESAGoogle Scholar
  27. Lecar M, Podolak M, Sasselov D, Chiang E (2006) ApJ 640:1115ADSCrossRefGoogle Scholar
  28. Liebes S (1964) Phys Rev 133:835ADSCrossRefGoogle Scholar
  29. Marshall DJ, Robin AC, Reylé C, Schultheis M, Picaud S (2006) A & A 453:635ADSCrossRefGoogle Scholar
  30. Mróz P, Udalski A, Skowron J et al (2017) Nature 548:183ADSGoogle Scholar
  31. Ojha DK, Bienayme O, Robin AC, Creze M, Mohan V (1996) A & A 311:456ADSGoogle Scholar
  32. Paczynski B (1996) ARA & A 34:419ADSCrossRefGoogle Scholar
  33. Picaud S, Robin AC (2004) A & A 428:891ADSCrossRefGoogle Scholar
  34. Popowski P, Griest K, Thomas CL et al (2005) ApJ 631:879ADSCrossRefGoogle Scholar
  35. Refsdal S (1964) MNRAS 128:295ADSMathSciNetCrossRefGoogle Scholar
  36. Reylé C, Robin AC (2001) A & A 373:886ADSCrossRefGoogle Scholar
  37. Rich RM, Reitzel DB, Howard CD, Zhao H (2007) ApJ 658:L29ADSCrossRefGoogle Scholar
  38. Robin AC, Reylé C, Derrière S, Picaud S (2003) A & A 409:523ADSCrossRefGoogle Scholar
  39. Robin AC, Marshall DJ, Schultheis M, Reylé C (2012) A & A 538:A106ADSCrossRefGoogle Scholar
  40. Robin AC, Reylé C, Fliri J, Czekaj M, Robert CP, Martins AMM (2014) A & A 569:A13ADSCrossRefGoogle Scholar
  41. Spergel D, Gehrels N, Baltay C et al (2015). arXiv:1503.03757
  42. Spergel D, Gehrels N, Breckinridge J et al (2013). arXiv:1305.5422
  43. Sumi T, Abe F, Bond IA et al (2003) ApJ 591:204ADSCrossRefGoogle Scholar
  44. Sumi T, Woźniak PR, Udalski A et al (2006) ApJ 636:240ADSCrossRefGoogle Scholar
  45. Sumi T, Bennett DP, Bond IA et al (2013) ApJ 778:150ADSCrossRefGoogle Scholar
  46. Udalski A, Szymanski M, Mao S et al (1994) ApJ 436:L103ADSCrossRefGoogle Scholar
  47. Udalski A, Szymanski MK, Soszynski I, Poleski R (2008) Acta Astronaut 58:69Google Scholar
  48. Wood A, Mao S (2005) MNRAS 362:945ADSCrossRefGoogle Scholar
  49. Wozniak PR (2000) Acta Astronaut 50:421Google Scholar
  50. Wyrzykowski Ł, Rynkiewicz AE, Skowron J et al (2015) ApJS 216:12ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Astronomical Research Institute of ThailandChiang MaiThailand

Personalised recommendations